Parallel embeddings of octahedral polyhedra
Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 122-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a combinatorial representation of an octahedral polyhedron (crystal), find its geometrical parameters, and show that the parameters of such a polyhedron and its mirror image coincide and are simply measured. Using the combinatorial representation of a diamond, we are able to construct an algorithm which finds a round cut diamond of maximum radius embedded into an octahedral diamond and determines how to place this cut diamond in the octahedral one. This results in creating a technological process to cut round diamonds of maximum value from octahedral ones.
@article{DM_2008_20_2_a8,
     author = {L. G. Babat and A. A. Fridman},
     title = {Parallel embeddings of octahedral polyhedra},
     journal = {Diskretnaya Matematika},
     pages = {122--159},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a8/}
}
TY  - JOUR
AU  - L. G. Babat
AU  - A. A. Fridman
TI  - Parallel embeddings of octahedral polyhedra
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 122
EP  - 159
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_2_a8/
LA  - ru
ID  - DM_2008_20_2_a8
ER  - 
%0 Journal Article
%A L. G. Babat
%A A. A. Fridman
%T Parallel embeddings of octahedral polyhedra
%J Diskretnaya Matematika
%D 2008
%P 122-159
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_2_a8/
%G ru
%F DM_2008_20_2_a8
L. G. Babat; A. A. Fridman. Parallel embeddings of octahedral polyhedra. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 122-159. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a8/

[1] Fridman A. A., Babat L. G., Mirovoi almazobrilliantovyi rynok. Matematicheskie aspekty otsenki i obrabotki almazov, TsEMI RAN, Moskva, 1995

[2] Fridman A. A., Babat L. G., Mirovoi almazobrilliantovyi rynok. Matematicheskii metod otsenki i obrabotki almazov, TsEMI RAN, Moskva, 1995

[3] Fridman A. A., Babat L. G., Mirovoi almazobrilliantovyi rynok. Issledovanie vliyaniya formy almaza na ego stoimost: matematicheskii podkhod i kompyuternaya realizatsiya, TsEMI RAN, Moskva, 1996

[4] Fridman A. A., Babat L. G., Optimalnoe vlozhenie brillianta v almaz i stoimostnaya otsenka almaza, TsEMI RAN, Moskva, 2005

[5] Strodiot J., Nguyen Van Hien, Nguyen Van Thoai, “Application of nonsmooth optimization to a design: Centering problem”, Spetsialnyi otchet Mezhdunarodnogo instituta sistemnogo analiza, 1985