Parallel embeddings of octahedral polyhedra
Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 122-159
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a combinatorial representation of an octahedral polyhedron (crystal), find its geometrical parameters, and show that the parameters of such a polyhedron and its mirror image coincide and are simply measured.
Using the combinatorial representation of a diamond, we are able to construct an algorithm which finds a round cut diamond of maximum radius embedded into an octahedral diamond and determines how to place this cut diamond in the octahedral one. This results in creating a technological process to cut round diamonds of maximum value from octahedral ones.
@article{DM_2008_20_2_a8,
author = {L. G. Babat and A. A. Fridman},
title = {Parallel embeddings of octahedral polyhedra},
journal = {Diskretnaya Matematika},
pages = {122--159},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a8/}
}
L. G. Babat; A. A. Fridman. Parallel embeddings of octahedral polyhedra. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 122-159. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a8/