Malcev rings
Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 63-81

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, Malcev rings are defined. The class of Malcev rings strictly contains rings of Malcev–Neumann series, formal skew Laurent series rings, and formal pseudo-differential operator rings. In the paper, ring-theoretic properties of Malcev rings are studied. It turns out that rings of Malcev–Neumann series, formal skew Laurent series rings, and formal pseudo-differential operator rings have similar ring-theoretic properties related to the existence of the filtration with respect to the lowest degree of the series.
@article{DM_2008_20_2_a5,
     author = {D. A. Tuganbaev},
     title = {Malcev rings},
     journal = {Diskretnaya Matematika},
     pages = {63--81},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/}
}
TY  - JOUR
AU  - D. A. Tuganbaev
TI  - Malcev rings
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 63
EP  - 81
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/
LA  - ru
ID  - DM_2008_20_2_a5
ER  - 
%0 Journal Article
%A D. A. Tuganbaev
%T Malcev rings
%J Diskretnaya Matematika
%D 2008
%P 63-81
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/
%G ru
%F DM_2008_20_2_a5
D. A. Tuganbaev. Malcev rings. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 63-81. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/