Malcev rings
Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 63-81
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, Malcev rings are defined. The class of Malcev rings strictly contains rings of Malcev–Neumann series, formal skew Laurent series rings, and formal pseudo-differential operator rings. In the paper, ring-theoretic properties of Malcev rings are studied. It turns out that rings of Malcev–Neumann series, formal skew Laurent series rings, and formal pseudo-differential operator rings have similar ring-theoretic properties related to the existence of the filtration with respect to the lowest degree of the series.
@article{DM_2008_20_2_a5,
     author = {D. A. Tuganbaev},
     title = {Malcev rings},
     journal = {Diskretnaya Matematika},
     pages = {63--81},
     year = {2008},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/}
}
TY  - JOUR
AU  - D. A. Tuganbaev
TI  - Malcev rings
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 63
EP  - 81
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/
LA  - ru
ID  - DM_2008_20_2_a5
ER  - 
%0 Journal Article
%A D. A. Tuganbaev
%T Malcev rings
%J Diskretnaya Matematika
%D 2008
%P 63-81
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/
%G ru
%F DM_2008_20_2_a5
D. A. Tuganbaev. Malcev rings. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 63-81. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a5/

[1] Benhissi A., Les anneaux de séries formelles, Queen's Papers in Pure and Applied Mathematics, 124, Queen's Univ., Kingston, 2003 | MR | Zbl

[2] Bergman G. M., “Conjugates and $n$th roots in Hahn–Laurents group rings”, Bull. Malaysian Math. Soc., 1:2 (1978), 29–41 | MR | Zbl

[3] Brookfield G., “Noetherian generalized power series rings”, Commun. Algebra, 32:3 (2004), 919–926 | DOI | MR | Zbl

[4] Faith C., Algebra: rings, modules, and categories, Vol. I, Springer, Berlin, 1973 | MR | Zbl

[5] Goodearl K. R., “Centralizers in differential, pseudo-differential, and fractional differential operator rings”, Rocky Mountain J. Math., 13:4 (1983), 573–618 | MR | Zbl

[6] Goodearl K. R., Small L. W., “Krull versus global dimension in Noetherian PI-rings”, Proc. Amer. Math. Soc., 92:2 (1984), 175–178 | DOI | MR | Zbl

[7] Goodearl K. R., Warfield R. B., An introduction to noncommutative Noetherian rings, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[8] Liu Z., “The ascending chain condition for principal ideals of rings of generalized power series”, Commun. Algebra, 32:9 (2004), 3305–3314 | DOI | MR | Zbl

[9] Liu Z., Ahsan J., “The Tor-groups of modules of generalized power series”, Algebra Colloq., 12:3 (2005), 477–484 | MR | Zbl

[10] Lorenz M., “Division algebras generated by finitely generated nilpotent groups”, J. Algebra, 85 (1983), 368–381 | DOI | MR | Zbl

[11] Makar-Limanov L., “The skew field of fractions of the first Weyl algebra contains a free noncommutative subalgebra”, Commun. Algebra, 11:17 (1983), 2003–2006 | DOI | MR | Zbl

[12] Maltsev A. I., “O vlozhenii gruppovykh algebr v tela”, Dokl. AH SSSR, 60 (1948), 1499–1501

[13] Musson I., Stafford K., “Malcev–Neumann group rings”, Commun. Algebra, 21:6 (1993), 2065–2075 | DOI | MR | Zbl

[14] Neumann B. H., “On ordered division rings”, Trans. Amer. Math. Soc., 66 (1949), 202–252 | DOI | MR | Zbl

[15] Parshin A. N., “O koltse formalnykh psevdodifferentsialnykh operatorov”, Trudy Matem. in-ta im. V. A. Steklova, 224, Nauka, M., 1999, 291–305 | MR

[16] Pommersheim J., Shahriari Sh., “Unique factorization in generalized power series rings”, Proc. Amer. Math. Soc., 134:5 (2006), 1277–1287 | DOI | MR | Zbl

[17] Ribenboim P., “Semisimple rings and von Neumann regular rings of generalized power series”, J. Algebra, 198:2 (1997), 327–338 | DOI | MR | Zbl

[18] Risman L., “Twisted rational functions and series”, J. Pure Appl. Algebra, 12 (1978), 181–199 | DOI | MR | Zbl

[19] Schur I., “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berliner Math. Ges., 4 (1905), 2–8 | Zbl

[20] Smits T. H., “Skew-Laurent series over semisimple rings”, Delft. Progr. Rep., 2 (1977), 131–136 | MR | Zbl

[21] Sonin K. I., “Regulyarnye koltsa ryadov Lorana”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 315–317 | MR | Zbl

[22] Sonin K. I., “Regulyarnye koltsa kosykh ryadov Lorana”, Fundamentalnaya i prikladnaya matematika, 1:2 (1995), 565–568 | MR | Zbl

[23] Sonin K. I., “Biregulyarnye koltsa ryadov Lorana”, Vestnik Moskovskogo Universiteta, ser. matem. mekh., 1997, no. 4, 22–24 | MR

[24] Sonin C., “Krull dimension of Malcev–Neumann rings”, Commun. Algebra, 26:9 (1998), 2915–2931 | DOI | MR | Zbl

[25] Tuganbaev A. A., “Radikal Dzhekobsona koltsa ryadov Lorana”, Fundamentalnaya i prikladnaya matematika, 12:2 (2006), 209–216

[26] Tuganbaev D. A., “Tsepnye koltsa ryadov Lorana”, Fundamentalnaya i prikladnaya matematika, 3:3 (1997), 947–951 | MR | Zbl

[27] Tuganbaev D. A., “Tsepnye koltsa kosykh ryadov Lorana”, Vestnik Moskovskogo Universiteta, ser. matem. mekh., 2000, no. 1, 52–55 | MR | Zbl

[28] Tuganbaev D. A., “Koltsa kosykh ryadov Lorana i koltsa glavnykh idealov”, Vestnik Moskovskogo Universiteta, ser. matem. mekh., 2000, no. 5, 55–57 | MR | Zbl

[29] Tuganbaev D. A., “Some ring and module properties of skew power series”, Formal Power Series and Algebraic Combinatorics, Springer, Berlin, 2000, 613–622 | MR | Zbl

[30] Tuganbaev D. A., “Polulokalnye distributivnye koltsa kosykh ryadov Lorana”, Fundamentalnaya i prikladnaya matematika, 6:3 (2000), 913–921 | MR | Zbl

[31] Tuganbaev D. A., “Koltsa psevdodifferentsialnykh operatorov i usloviya na tsepi”, Vestnik Moskovskogo Universiteta, ser. matem. mekh., 2002, no. 4, 26–32 | MR | Zbl

[32] Tuganbaev D. A., “Laurent series rings and pseudo-differential operator rings”, J. Math. Sci., 128:3 (2005), 2843–2893 | DOI | MR | Zbl

[33] Tuganbaev D. A., “Loranovskie koltsa”, Fundamentalnaya i prikladnaya matematika, 12:3 (2006), 151–224 | MR