Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2008_20_2_a1, author = {E. V. Sadovnik}, title = {Testing numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality}, journal = {Diskretnaya Matematika}, pages = {15--24}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a1/} }
E. V. Sadovnik. Testing numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 15-24. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a1/
[1] Lucas E., “Théorie dés functions numériques simplement périodiques”, Am. J. Math., 1 (1878), 184–239, 289–321 | DOI | MR
[2] Williams H. C., “Effective primality tests for some integer of the form $A5^n-1$ and $A7^n-1$”, Math. Comput., 48 (1987), 385–403 | DOI | MR | Zbl
[3] Agrawal M., Kayal N., Saxena N., Primes is in $P$, Dept. Computer Sci. and Engineering, Indian Inst. Technology, Kanpur, Kanpur-208016, 2002
[4] Vinogradov I. M., Osnovy teorii chisel, Nauka, Moskva, 1972 | MR
[5] Grusho A. A., Primenko E. A., Timonina E. E., Kriptograficheskie protokoly, Mariiskii filial Moskovskogo Otkrytogo Sotsialnogo Universiteta, Ioshkar-Ola, 2001
[6] Akho A., Khopkroft Dzh., Ullman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, Moskva, 1979 | MR | Zbl
[7] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, Moskva, 1965