Testing numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality
Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 15-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an algorithm to test numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality, where $2k$, $k$ is an odd positive integer, $\pi$ is a prime number, $i=1,\dots,n$, and $p_1p_2\cdots p_n=3\pmod4$. The algorithm makes use of the Lucas functions. The algorithm suggested is of complexity $\widehat O(\log^2N)$.
@article{DM_2008_20_2_a1,
     author = {E. V. Sadovnik},
     title = {Testing numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality},
     journal = {Diskretnaya Matematika},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a1/}
}
TY  - JOUR
AU  - E. V. Sadovnik
TI  - Testing numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 15
EP  - 24
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_2_a1/
LA  - ru
ID  - DM_2008_20_2_a1
ER  - 
%0 Journal Article
%A E. V. Sadovnik
%T Testing numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality
%J Diskretnaya Matematika
%D 2008
%P 15-24
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_2_a1/
%G ru
%F DM_2008_20_2_a1
E. V. Sadovnik. Testing numbers of the form $N=2kp_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}-1$ for primality. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 15-24. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a1/

[1] Lucas E., “Théorie dés functions numériques simplement périodiques”, Am. J. Math., 1 (1878), 184–239, 289–321 | DOI | MR

[2] Williams H. C., “Effective primality tests for some integer of the form $A5^n-1$ and $A7^n-1$”, Math. Comput., 48 (1987), 385–403 | DOI | MR | Zbl

[3] Agrawal M., Kayal N., Saxena N., Primes is in $P$, Dept. Computer Sci. and Engineering, Indian Inst. Technology, Kanpur, Kanpur-208016, 2002

[4] Vinogradov I. M., Osnovy teorii chisel, Nauka, Moskva, 1972 | MR

[5] Grusho A. A., Primenko E. A., Timonina E. E., Kriptograficheskie protokoly, Mariiskii filial Moskovskogo Otkrytogo Sotsialnogo Universiteta, Ioshkar-Ola, 2001

[6] Akho A., Khopkroft Dzh., Ullman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, Moskva, 1979 | MR | Zbl

[7] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, Moskva, 1965