The relationship between the level of affinity and cryptographic parameters of Boolean functions
Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the relations between the level of affinity and other cryptographic parameters of Boolean functions such as nonlinearity, the order of correlation, and algebraic immunity. It is proved that the problem of finding the level of affinity for certain class of functions is an $NP$-hard problem.
@article{DM_2008_20_2_a0,
     author = {M. L. Buryakov},
     title = {The relationship between the level of affinity and cryptographic parameters of {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a0/}
}
TY  - JOUR
AU  - M. L. Buryakov
TI  - The relationship between the level of affinity and cryptographic parameters of Boolean functions
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 3
EP  - 14
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_2_a0/
LA  - ru
ID  - DM_2008_20_2_a0
ER  - 
%0 Journal Article
%A M. L. Buryakov
%T The relationship between the level of affinity and cryptographic parameters of Boolean functions
%J Diskretnaya Matematika
%D 2008
%P 3-14
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_2_a0/
%G ru
%F DM_2008_20_2_a0
M. L. Buryakov. The relationship between the level of affinity and cryptographic parameters of Boolean functions. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a0/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Korrelyatsionnaya immunnost i realnaya sekretnost”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konferentsii (MGU 23–24 oktyabrya 2003 g.), MTsNMO, Moskva, 2004, 165–170

[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Kombiniruyuschie $k$-affinnye funktsii”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konferentsii (MGU 23–24 oktyabrya 2003 g.), MTsNMO, Moskva, 2004, 176–178

[3] Buryakov M. L., Logachev O. A., “Ob urovne affinnosti bulevykh funktsii”, Diskretnaya matematika, 17:4 (2005), 98–107 | MR | Zbl

[4] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, Moskva, 2004

[5] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11, 2002, 91–148 | MR

[6] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[7] Menezes A., van Oorschot P., Vanstone S., Handbook of applied cryptography, CRC, New York, 1997 | Zbl

[8] Siegenthaler T., “Correlation-immunity of nonlinear combining functions for cryptographic applications”, IEEE Trans. Inform. Theory, 30 (1984), 776–780 | DOI | MR | Zbl

[9] Courtois N., Pieprzyk J., “Cryptanalysis of block ciphers with overdefined systems of equations”, Lect. Notes Comput. Sci., 2501, 2002, 267–287 | MR | Zbl

[10] Courtois N., Patarin J., “About the XL Algorithm over $GF(2)$”, Lect. Notes Comput. Sci., 2612, 2003, 141–157 | MR | Zbl

[11] Courtois N., Meier W., “Algebraic attacks on stream ciphers with linear feedback”, Lect. Notes Comput. Sci., 2656, 2003, 345–359 | MR | Zbl

[12] Meier W., Pasalic E., Carlet C., “Algebraic attacks and decomposition of Boolean functions”, Lect. Notes Comput. Sci., 3027, 2004, 474–491 | MR | Zbl

[13] Matsui M., “Linear cryptanalysis method for DES cipher”, Lect. Notes Comput. Sci., 765, 1994, 386–397 | Zbl

[14] Rothaus O., “On bent function”, J. Combin. Theory, A20 (1976), 300–305 | DOI | MR

[15] Dalai D. K., Gupta K. C., Maitra S., “Results on algebraic immunity for cryptographically significant Boolean functions”, Lect. Notes Comput. Sci., 3348, 2004, 92–106 | MR | Zbl

[16] Timoshevskaya N. E., “O linearizatsionnykh mnozhestvakh”, Problemy teoreticheskoi kibernetiki, Izd-vo mekhaniko-matematicheskogo fakulteta MGU, Moskva, 2005, 154

[17] Timoshevskaya N. E., “Zadacha o kratchaishem linearizatsionnom mnozhestve”, Vestnik Tomskogo gos. univ., 14 (2005), 79–83

[18] Alekseev V. B., Vvedenie v teoriyu slozhnosti algoritmov, Izd-vo fakulteta VMiK MGU, Moskva, 2002

[19] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, Moskva, 1982 | MR