Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2008_20_2_a0, author = {M. L. Buryakov}, title = {The relationship between the level of affinity and cryptographic parameters of {Boolean} functions}, journal = {Diskretnaya Matematika}, pages = {3--14}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2008_20_2_a0/} }
TY - JOUR AU - M. L. Buryakov TI - The relationship between the level of affinity and cryptographic parameters of Boolean functions JO - Diskretnaya Matematika PY - 2008 SP - 3 EP - 14 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2008_20_2_a0/ LA - ru ID - DM_2008_20_2_a0 ER -
M. L. Buryakov. The relationship between the level of affinity and cryptographic parameters of Boolean functions. Diskretnaya Matematika, Tome 20 (2008) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/DM_2008_20_2_a0/
[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Korrelyatsionnaya immunnost i realnaya sekretnost”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konferentsii (MGU 23–24 oktyabrya 2003 g.), MTsNMO, Moskva, 2004, 165–170
[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Kombiniruyuschie $k$-affinnye funktsii”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konferentsii (MGU 23–24 oktyabrya 2003 g.), MTsNMO, Moskva, 2004, 176–178
[3] Buryakov M. L., Logachev O. A., “Ob urovne affinnosti bulevykh funktsii”, Diskretnaya matematika, 17:4 (2005), 98–107 | MR | Zbl
[4] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, Moskva, 2004
[5] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11, 2002, 91–148 | MR
[6] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979
[7] Menezes A., van Oorschot P., Vanstone S., Handbook of applied cryptography, CRC, New York, 1997 | Zbl
[8] Siegenthaler T., “Correlation-immunity of nonlinear combining functions for cryptographic applications”, IEEE Trans. Inform. Theory, 30 (1984), 776–780 | DOI | MR | Zbl
[9] Courtois N., Pieprzyk J., “Cryptanalysis of block ciphers with overdefined systems of equations”, Lect. Notes Comput. Sci., 2501, 2002, 267–287 | MR | Zbl
[10] Courtois N., Patarin J., “About the XL Algorithm over $GF(2)$”, Lect. Notes Comput. Sci., 2612, 2003, 141–157 | MR | Zbl
[11] Courtois N., Meier W., “Algebraic attacks on stream ciphers with linear feedback”, Lect. Notes Comput. Sci., 2656, 2003, 345–359 | MR | Zbl
[12] Meier W., Pasalic E., Carlet C., “Algebraic attacks and decomposition of Boolean functions”, Lect. Notes Comput. Sci., 3027, 2004, 474–491 | MR | Zbl
[13] Matsui M., “Linear cryptanalysis method for DES cipher”, Lect. Notes Comput. Sci., 765, 1994, 386–397 | Zbl
[14] Rothaus O., “On bent function”, J. Combin. Theory, A20 (1976), 300–305 | DOI | MR
[15] Dalai D. K., Gupta K. C., Maitra S., “Results on algebraic immunity for cryptographically significant Boolean functions”, Lect. Notes Comput. Sci., 3348, 2004, 92–106 | MR | Zbl
[16] Timoshevskaya N. E., “O linearizatsionnykh mnozhestvakh”, Problemy teoreticheskoi kibernetiki, Izd-vo mekhaniko-matematicheskogo fakulteta MGU, Moskva, 2005, 154
[17] Timoshevskaya N. E., “Zadacha o kratchaishem linearizatsionnom mnozhestve”, Vestnik Tomskogo gos. univ., 14 (2005), 79–83
[18] Alekseev V. B., Vvedenie v teoriyu slozhnosti algoritmov, Izd-vo fakulteta VMiK MGU, Moskva, 2002
[19] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, Moskva, 1982 | MR