On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 87-93

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of generators of a group consisting of three involutions, two of which commute, is called a Mazurov triple. We describe algorithms for finding in an explicit form the Mazurov triples of one of the sporadic Monsters, the finite simple group $B$, and for constructing a Hamiltonian cycle in the Cayley graph of the finite group with Mazurov triple. We give examples of Hamiltonian cycles in the Cayley graphs of some groups.
@article{DM_2008_20_1_a7,
     author = {A. I. Makosiy and A. V. Timofeenko},
     title = {On {Mazurov} triples of the sporadic group~$B$ and {Hamiltonian} cycles of the {Cayley} graph},
     journal = {Diskretnaya Matematika},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/}
}
TY  - JOUR
AU  - A. I. Makosiy
AU  - A. V. Timofeenko
TI  - On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 87
EP  - 93
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/
LA  - ru
ID  - DM_2008_20_1_a7
ER  - 
%0 Journal Article
%A A. I. Makosiy
%A A. V. Timofeenko
%T On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph
%J Diskretnaya Matematika
%D 2008
%P 87-93
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/
%G ru
%F DM_2008_20_1_a7
A. I. Makosiy; A. V. Timofeenko. On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/