On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 87-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of generators of a group consisting of three involutions, two of which commute, is called a Mazurov triple. We describe algorithms for finding in an explicit form the Mazurov triples of one of the sporadic Monsters, the finite simple group $B$, and for constructing a Hamiltonian cycle in the Cayley graph of the finite group with Mazurov triple. We give examples of Hamiltonian cycles in the Cayley graphs of some groups.
@article{DM_2008_20_1_a7,
     author = {A. I. Makosiy and A. V. Timofeenko},
     title = {On {Mazurov} triples of the sporadic group~$B$ and {Hamiltonian} cycles of the {Cayley} graph},
     journal = {Diskretnaya Matematika},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/}
}
TY  - JOUR
AU  - A. I. Makosiy
AU  - A. V. Timofeenko
TI  - On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 87
EP  - 93
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/
LA  - ru
ID  - DM_2008_20_1_a7
ER  - 
%0 Journal Article
%A A. I. Makosiy
%A A. V. Timofeenko
%T On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph
%J Diskretnaya Matematika
%D 2008
%P 87-93
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/
%G ru
%F DM_2008_20_1_a7
A. I. Makosiy; A. V. Timofeenko. On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/

[1] Di Martino L., Tamburini M. C., “2-generation of finite simple groups and some related topics”, Generators and relations in groups and geometries, eds. Barlotti A., Ellers E. W., Plaumann P., Strambach K., Kluwer, Dordrecht, 1991, 195–233 | MR

[2] Makosii A. I., “Porozhdayuschie chetverki involyutsii gruppy $PSU_3(9)$”, Izbrannye dokl. mezhdunar. konf. po matematike i mekhanike, Izd-vo Tomskogo gosuniv., Tomsk, 2003, 28–30

[3] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, Moskva, 1985 | MR | Zbl

[4] Mazurov V. D., “O porozhdenii sporadicheskikh prostykh grupp tremya involyutsiyami, dve iz kotorykh perestanovochny”, Sibirskii matem. zhurnal, 44:1 (2003), 193–198 | MR | Zbl

[5] Timofeenko A. V., O porozhdayuschikh troikakh involyutsii v sporadicheskikh gruppakh, Dep. VINITI, 19.03.01 No 693-V2001

[6] Timofeenko A. V., “O porozhdayuschikh troikakh involyutsii bolshikh sporadicheskikh grupp”, Diskretnaya matematika, 15:2 (2003), 103–112 | MR | Zbl

[7] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, Moskva, 1996 | MR | Zbl