On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 87-93
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of generators of a group consisting of three involutions, two of which commute, is called a Mazurov triple. We describe algorithms for finding in an explicit form the Mazurov triples of one of the sporadic Monsters, the finite simple group $B$, and for constructing a Hamiltonian cycle in the Cayley graph of the finite group with Mazurov triple. We give examples of Hamiltonian cycles in the Cayley graphs of some groups.
@article{DM_2008_20_1_a7,
author = {A. I. Makosiy and A. V. Timofeenko},
title = {On {Mazurov} triples of the sporadic group~$B$ and {Hamiltonian} cycles of the {Cayley} graph},
journal = {Diskretnaya Matematika},
pages = {87--93},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/}
}
TY - JOUR AU - A. I. Makosiy AU - A. V. Timofeenko TI - On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph JO - Diskretnaya Matematika PY - 2008 SP - 87 EP - 93 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/ LA - ru ID - DM_2008_20_1_a7 ER -
A. I. Makosiy; A. V. Timofeenko. On Mazurov triples of the sporadic group~$B$ and Hamiltonian cycles of the Cayley graph. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a7/