Skew Laurent series rings and the maximum condition on right annihilators
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a ring and let $\varphi$ be an automorphism of $A$. Then the skew Laurent series ring $A((x,\varphi))$ is a right serial ring with the maximum condition on right annihilators if and only if $A$ is a right Artinian right serial ring.
@article{DM_2008_20_1_a6,
     author = {A. A. Tuganbaev},
     title = {Skew {Laurent} series rings and the maximum condition on right annihilators},
     journal = {Diskretnaya Matematika},
     pages = {80--86},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a6/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Skew Laurent series rings and the maximum condition on right annihilators
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 80
EP  - 86
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a6/
LA  - ru
ID  - DM_2008_20_1_a6
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Skew Laurent series rings and the maximum condition on right annihilators
%J Diskretnaya Matematika
%D 2008
%P 80-86
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a6/
%G ru
%F DM_2008_20_1_a6
A. A. Tuganbaev. Skew Laurent series rings and the maximum condition on right annihilators. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 80-86. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a6/

[1] Faith C., Algebra: rings, modules, and categories, Vol. I, Springer, Berlin, 1973 | MR | Zbl

[2] Johns B., “Chain conditions and nil ideals”, J. Algebra, 73:2 (1981), 287–294 | DOI | MR | Zbl

[3] Lanski Ch., “Nil subrings of Goldie rings are nilpotent”, Canad. J. Math., 21 (1969), 904–907 | MR | Zbl

[4] Shock R. C., “Nil subrings in finiteness conditions”, Amer. Math. Monthly, 78 (1971), 741–748 | DOI | MR | Zbl

[5] Tuganbaev D. A., “Polulokalnye distributivnye koltsa kosykh ryadov Lorana”, Fundamentalnaya i prikladnaya matematika, 6:3 (2000), 913–921 | MR | Zbl

[6] Tuganbaev D. A., “Laurent series rings and pseudo-differential operator rings”, J. Math. Sci., 128:3 (2005), 2843–2893 | DOI | MR | Zbl