@article{DM_2008_20_1_a6,
author = {A. A. Tuganbaev},
title = {Skew {Laurent} series rings and the maximum condition on right annihilators},
journal = {Diskretnaya Matematika},
pages = {80--86},
year = {2008},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a6/}
}
A. A. Tuganbaev. Skew Laurent series rings and the maximum condition on right annihilators. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 80-86. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a6/
[1] Faith C., Algebra: rings, modules, and categories, Vol. I, Springer, Berlin, 1973 | MR | Zbl
[2] Johns B., “Chain conditions and nil ideals”, J. Algebra, 73:2 (1981), 287–294 | DOI | MR | Zbl
[3] Lanski Ch., “Nil subrings of Goldie rings are nilpotent”, Canad. J. Math., 21 (1969), 904–907 | MR | Zbl
[4] Shock R. C., “Nil subrings in finiteness conditions”, Amer. Math. Monthly, 78 (1971), 741–748 | DOI | MR | Zbl
[5] Tuganbaev D. A., “Polulokalnye distributivnye koltsa kosykh ryadov Lorana”, Fundamentalnaya i prikladnaya matematika, 6:3 (2000), 913–921 | MR | Zbl
[6] Tuganbaev D. A., “Laurent series rings and pseudo-differential operator rings”, J. Math. Sci., 128:3 (2005), 2843–2893 | DOI | MR | Zbl