The intersection number of complete $r$-partite graphs
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 70-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Latin squares $C,D$ of order $n$ are called pseudo-orthogonal if any two rows of the matrices $C$ and $D$ have exactly one common element. We give conditions for existence of families consisting of $t$ pseudo-orthogonal Latin squares of order $n$. It is proved that the intersection number of a complete $r$-partite graph $r\overline K_n$ equals $n^2$ if and only if there exists a family consisting of $r-2$ pairwise pseudo-orthogonal Latin squares of order $n$. It is proved that if $2\leq r\leq\operatorname{prols}(n,t)+2$, $0\leq m\leq2^{n^2-n}$, where $\operatorname{prols}(n)$ is the maximum $t$ such that there exists a set of $t$ pseudo-orthogonal Latin squares of order $n$, then the intersection number of the graph $r\overline K_n+K_m$ is equal to $n^2$. Applications of the obtained results to calculating the intersection number of some graphs are given.
@article{DM_2008_20_1_a5,
     author = {N. S. Bol'shakova},
     title = {The intersection number of complete $r$-partite graphs},
     journal = {Diskretnaya Matematika},
     pages = {70--79},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a5/}
}
TY  - JOUR
AU  - N. S. Bol'shakova
TI  - The intersection number of complete $r$-partite graphs
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 70
EP  - 79
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a5/
LA  - ru
ID  - DM_2008_20_1_a5
ER  - 
%0 Journal Article
%A N. S. Bol'shakova
%T The intersection number of complete $r$-partite graphs
%J Diskretnaya Matematika
%D 2008
%P 70-79
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a5/
%G ru
%F DM_2008_20_1_a5
N. S. Bol'shakova. The intersection number of complete $r$-partite graphs. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a5/

[1] Kharari F., Teoriya grafov, Mir, Moskva, 1973 | MR

[2] Szpilrajn-Marczewski E., “Sur deux propriétés des classes d'ensembles”, Fundam. Math., 33 (1945), 303–307 | MR | Zbl

[3] Erdős P., Goodman A. W., Pósa L., “The representation of a graph by set intersections”, Canad. J. Math., 18:1 (1966), 106–112 | MR | Zbl

[4] Scheinerman E. R., Trenk A. N., “On the fractional intersection number of graph”, Graph Comb., 15:3 (1999), 341–351 | DOI | MR | Zbl

[5] Marenich E. E., Bolshakova N. S., “Chislo peresechenii grafa”, Diskretnaya matematika, 19:4 (2007), 97–107 | MR

[6] Bollobás B., Erdős P., Spencer J., West D. B., “Clique covering of the edges of a random graph”, Combinatorica, 13 (1993), 1–5 | DOI | MR | Zbl

[7] Frieze A., Reed B., “Covering the edges of a random graph by cliques”, Combinatorica, 15 (1995), 489–497 | DOI | MR | Zbl

[8] Raizer G. Dzh., Kombinatorika, Mir, Moskva, 1966

[9] Kholl M., Kombinatorika, Mir, Moskva, 1970 | MR

[10] Denes J., Keedwell A. D., Latin squares and their applications, Akademiai Kiado, Budapest, 1974 | MR | Zbl

[11] Kleitman D. J., “Families of nondisjoint subsets”, J. Comb. Theory, 1 (1966), 153–155 | DOI | MR | Zbl