On random 2-adjacent 0/1-polyhedra
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 64-69

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate the probability $P_{k,m}$ that, as $k$ vertices of the unit cube $I_m=\{0,1\}^m$ are randomly chosen, their convex hull is a polyhedron whose graph is complete. In particular, we establish that, as $n\to\infty$, the probability $P_{k(m),m}$ tends to one if $k(m)=O(2^{m/6})$ and $P_{k(m),m}$ tends to zero if $k(m)\geq(3/2)^m$. The results given in this paper, first, to a great extent explain why the intractable discrete problems are so widely spread, and second, support the well-known Gale's hypothesis published in 1956.
@article{DM_2008_20_1_a4,
     author = {V. A. Bondarenko and A. G. Brodskiy},
     title = {On random 2-adjacent 0/1-polyhedra},
     journal = {Diskretnaya Matematika},
     pages = {64--69},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a4/}
}
TY  - JOUR
AU  - V. A. Bondarenko
AU  - A. G. Brodskiy
TI  - On random 2-adjacent 0/1-polyhedra
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 64
EP  - 69
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a4/
LA  - ru
ID  - DM_2008_20_1_a4
ER  - 
%0 Journal Article
%A V. A. Bondarenko
%A A. G. Brodskiy
%T On random 2-adjacent 0/1-polyhedra
%J Diskretnaya Matematika
%D 2008
%P 64-69
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a4/
%G ru
%F DM_2008_20_1_a4
V. A. Bondarenko; A. G. Brodskiy. On random 2-adjacent 0/1-polyhedra. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 64-69. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a4/