On random 2-adjacent 0/1-polyhedra
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 64-69
Voir la notice de l'article provenant de la source Math-Net.Ru
We estimate the probability $P_{k,m}$ that, as $k$ vertices of the unit cube $I_m=\{0,1\}^m$ are randomly chosen, their convex hull is a polyhedron whose graph is complete. In particular, we establish that, as $n\to\infty$, the probability $P_{k(m),m}$ tends to one if $k(m)=O(2^{m/6})$ and $P_{k(m),m}$ tends to zero if $k(m)\geq(3/2)^m$.
The results given in this paper, first, to a great extent explain why the intractable discrete problems are so widely spread, and second, support the well-known Gale's hypothesis published in 1956.
@article{DM_2008_20_1_a4,
author = {V. A. Bondarenko and A. G. Brodskiy},
title = {On random 2-adjacent 0/1-polyhedra},
journal = {Diskretnaya Matematika},
pages = {64--69},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a4/}
}
V. A. Bondarenko; A. G. Brodskiy. On random 2-adjacent 0/1-polyhedra. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 64-69. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a4/