A block algorithm of Lanczos type for solving sparse systems of linear equations
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 145-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new block algorithm for solving sparse systems of linear equations over $GF(2)$ of the form $Ax=b$, $A\in F(N\times N)$, $b\in F(N\times1)$, where $A$ is a symmetric matrix, $F=GF(2)$ is a field with two elements. The algorithm is constructed with the use of matrix Padé approximations. The running time of the algorithm with the use of parallel calculations is $\max\{O(dN^2/n),O(N^2)\}$, where $d$ is the maximal number of nonzero elements over all rows of the matrix $A$. If $d$ for some absolute constant $C$, then this estimate is better than the estimate of the running time of the well-known Montgomery algorithm.
@article{DM_2008_20_1_a12,
     author = {M. A. Cherepnev},
     title = {A block algorithm of {Lanczos} type for solving sparse systems of linear equations},
     journal = {Diskretnaya Matematika},
     pages = {145--150},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a12/}
}
TY  - JOUR
AU  - M. A. Cherepnev
TI  - A block algorithm of Lanczos type for solving sparse systems of linear equations
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 145
EP  - 150
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a12/
LA  - ru
ID  - DM_2008_20_1_a12
ER  - 
%0 Journal Article
%A M. A. Cherepnev
%T A block algorithm of Lanczos type for solving sparse systems of linear equations
%J Diskretnaya Matematika
%D 2008
%P 145-150
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a12/
%G ru
%F DM_2008_20_1_a12
M. A. Cherepnev. A block algorithm of Lanczos type for solving sparse systems of linear equations. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 145-150. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a12/