Random permutations with cycle lengths in a~given finite set
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 25-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of all permutations of degree $n$ whose cycle lengths are elements of a fixed finite set $A\subset\mathbf N$ such that $\operatorname{card}A\ge2$ and $\operatorname{gcd}\{k\mid k\in A\}=1$. Under the assumption that the permutation $X$ is equiprobably chosen from this class, we obtain a multidimensional local normal theorem for the joint distribution of the numbers of cycles of given sizes in this permutation. The obtained results are utilised and sharpened in the case where $X$ is an equiprobably chosen solution of the equation $X^r=e$, where $e$ is an identity permutation of degree $n$, $r\ge2$ is a fixed positive integer.
@article{DM_2008_20_1_a1,
     author = {A. N. Timashev},
     title = {Random permutations with cycle lengths in a~given finite set},
     journal = {Diskretnaya Matematika},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a1/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Random permutations with cycle lengths in a~given finite set
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 25
EP  - 37
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a1/
LA  - ru
ID  - DM_2008_20_1_a1
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Random permutations with cycle lengths in a~given finite set
%J Diskretnaya Matematika
%D 2008
%P 25-37
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a1/
%G ru
%F DM_2008_20_1_a1
A. N. Timashev. Random permutations with cycle lengths in a~given finite set. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 25-37. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a1/