Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2008_20_1_a1, author = {A. N. Timashev}, title = {Random permutations with cycle lengths in a~given finite set}, journal = {Diskretnaya Matematika}, pages = {25--37}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a1/} }
A. N. Timashev. Random permutations with cycle lengths in a~given finite set. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 25-37. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a1/
[1] Chowla S., Herstein I. N., Scott W. R., “The solution of $x^d=1$ in symmetric groups”, Norske Vid. Selsk. Forhdl., 25 (1952), 29–31 | MR | Zbl
[2] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2000 | MR | Zbl
[3] Bender E. A., “Asimptoticheskie metody v teorii perechislenii”, Perechislitelnye zadachi kombinatornogo analiza, Mir, Moskva, 1979, 266–310
[4] Volynets L. M., “Chislo reshenii uravneniya $x^s=e$ v simmetricheskoi gruppe”, Matem. zametki, 40:2 (1986), 586–589 | MR | Zbl
[5] Pavlov A. I., “O podstanovkakh s dlinami tsiklov iz zadannogo mnozhestva”, Teoriya veroyatnostei i ee primeneniya, 31:3 (1986), 618–619
[6] Wilf H., “The asymptotics of $e^{P(x)}$ and the number of elements of each order in $S_n$”, Bull. Amer. Math. Soc., 15 (1986), 228–232 | DOI | MR | Zbl
[7] Moser L., Wyman M., “On the solution of $x^d=1$ in symmetric groups”, Canad. J. Math., 7 (1955), 159–168 | MR | Zbl
[8] Volynets L. M., “Chislo reshenii odnogo uravneniya v simmetricheskoi gruppe”, Veroyatnostnye protsessy i ikh prilozheniya, MIEM, Moskva, 1985, 104–109
[9] Timashev A. N., “Predelnye teoremy v skhemakh razmescheniya chastits po razlichnym yacheikam s ogranicheniyami na zapolneniya yacheek”, Teoriya veroyatnostei i ee primeneniya, 49:4 (2004), 712–725 | MR
[10] Sachkov V. N., “Asimptoticheskie formuly i predelnye raspredeleniya dlya kombinatornykh konfiguratsii, porozhdaemykh mnogochlenami”, Diskretnaya matematika, 19:3 (2007), 3–14 | MR | Zbl