Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2007_19_4_a7, author = {S. N. Zhuk}, title = {On-line algorithms for packing rectangles into several strips}, journal = {Diskretnaya Matematika}, pages = {117--131}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a7/} }
S. N. Zhuk. On-line algorithms for packing rectangles into several strips. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 117-131. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a7/
[1] Garey M. R., Johnson D. S., Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, 1979 | MR | Zbl
[2] Baker B. S., Coffman E. J., Rivest R. L., “Orthogonal packings in two dimensions”, SIAM J. Comput., 9 (1980), 846–855 | DOI | MR | Zbl
[3] Kenyon C., Remila E., “A near optimal solution to a two-dimensional cutting stock problem”, Math. Oper. Res., 25 (2000), 645–656 | DOI | MR | Zbl
[4] Baker B. S., Brown D. J., Katseff H. P., “A 5/4 algorithm for two-dimensional packing”, J. Algorithms, 2 (1981), 348–368 | DOI | MR | Zbl
[5] Baker B. S., Schwarz J. S., “Shelf algorithms for two-dimensional packing problems”, SIAM J. Comput., 12 (1983), 508–525 | DOI | MR | Zbl
[6] Csirik J., Woeginger G. J., “Shelf algorithms for on-line strip packing”, Inform. Process. Lett., 63:4 (1997), 171–175 | DOI | MR
[7] Ee-Chien Chang, Weiguo Wang, Kankanhalli M. S., “Multidimensional on-line bin-packing: An algorithm and its average-case analysis”, Inform. Process. Lett., 48:3 (1993), 121–125 | DOI | MR | Zbl
[8] Van Vliet A., “An improved lower bound for on-line bin packing algorithms”, Inform. Process. Lett., 43:5 (1992), 277–284 | DOI | MR | Zbl
[9] Graham R. L., “Bounds for certain multiprocessing anomalies”, Bell System Tech. J., 45 (1966), 1563–1581
[10] Albers S., “Better bounds for online scheduling”, SIAM J. Comput., 29 (1998), 459–473 | DOI | MR | Zbl
[11] Bartal Y., Fiat A., Karloff H., Vohra R., “New algorithms for an ancient scheduling problem”, J. Comput. Syst. Sci., 51 (1995), 359–366 | DOI | MR
[12] Faigle U., Kern W., Turán G., “On the performance of on-line algorithms for partition problems”, Acta Cybern., 9 (1989), 107–119 | MR | Zbl
[13] Karger D. R., Phillips S. J., Torng E., “A better algorithm for an ancient scheduling problem”, J. Algorithms, 20 (1996), 400–430 | DOI | MR | Zbl
[14] Bartal Y., Karloff H., Rabani Y., “A better lower bound for on-line scheduling”, Inform. Process. Lett., 50:3 (1994), 113–116 | DOI | MR | Zbl
[15] Caramia M., Giordani S., Iovanella A., “Grid scheduling by on-line rectangle packing”, Networks, 44 (2004), 106–119 | DOI | MR | Zbl
[16] Zhuk S. N., “Priblizhennye algoritmy upakovki pryamougolnikov v neskolko polos”, Diskretnaya matematika, 18:1 (2006), 91–105 | MR | Zbl
[17] Zhuk S., Chernykh A., Avetisyan A., Gaissaryan S., Grushin D., Kuzjurin N., Pospelov A., Shokurov A., “Comparison of scheduling heuristics for grid resource broker”, Proc. 5th Mexican Intern. Conf. Computer Sci., IEEE Computer Society, Washington, DC, 2004, 388–392
[18] Pospelov A. I., “Analiz odnogo algoritma upakovki pryamougolnikov, svyazannogo s postroeniem raspisanii dlya klasterov”, Trudy In-ta sistemnogo programmirovaniya. Matematicheskie metody i algoritmy, 6 (2004), 7–12