On the intersection number of a~graph
Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 97-107
Voir la notice de l'article provenant de la source Math-Net.Ru
We find an expression of the intersection number of a graph in terms of the minimum number of complete subgraphs that form a covering of the graph. This provides us with a uniform approach to studying properties of the intersection number of a graph. We distinguish the class of graphs for which the intersection number is equal to the least number of cliques covering the graph. It is proved that the intersection number of a complete $r$-partite graph $r\overline K_2$ is equal to the least $n$ such that $r\le\binom{n-1}{[n/2]-1}$. It is proved that the intersection number of the graph $r\overline K_2+K_m$ is equal to the least $n$ such that $m+r\le2^{n-1}$, $r\le\binom{n-1}{[n/2]-1}$. Formulas for the intersection numbers of the graphs $rC_4$, $r\operatorname{Chain}(3)$, $r(C_4+K_m)$, $rW_5$ are obtained.
@article{DM_2007_19_4_a5,
author = {E. E. Marenich and N. S. Bol'shakova},
title = {On the intersection number of a~graph},
journal = {Diskretnaya Matematika},
pages = {97--107},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a5/}
}
E. E. Marenich; N. S. Bol'shakova. On the intersection number of a~graph. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 97-107. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a5/