@article{DM_2007_19_4_a2,
author = {M. L. Nikolaev and G. Yu. Sofronov},
title = {A multiple optimal stopping rule for sums of independent random variables},
journal = {Diskretnaya Matematika},
pages = {42--51},
year = {2007},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/}
}
M. L. Nikolaev; G. Yu. Sofronov. A multiple optimal stopping rule for sums of independent random variables. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 42-51. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/
[1] Chao I., Robbins G., Sigmund D., Teoriya optimalnykh pravil ostanovki, Nauka, Moskva, 1977 | MR
[2] Gabor C. R., Halliday T. R., “Sequential mate choice by multiply mating smooth newts: females become more choosy”, Behavioral Ecology, 8 (1997), 162–166 | DOI
[3] Haggstrom G., “Optimal stopping and experimental design”, Ann. Math. Statist., 37 (1966), 7–29 | DOI | MR | Zbl
[4] Nikolaev M. L., “Obobschennye posledovatelnye protsedury”, Litov. matem. sb., 19:3 (1979), 35–44 | MR | Zbl
[5] Nikolaev M. L., “O kriterii optimalnosti obobschennoi posledovatelnoi protsedury”, Litov. matem. sb., 21:3 (1981), 75–82 | MR | Zbl
[6] Nikolaev M. L., “Optimalnye pravila mnogokratnoi ostanovki”, Obozrenie prikladnoi i promyshlennoi matematiki, 5:2 (1998), 309–348 | Zbl
[7] Nikolaev M. L., “Ob optimalnoi mnogokratnoi ostanovke markovskikh posledovatelnostei”, Teoriya veroyatnostei i ee primeneniya, 43:2 (1998), 374–382 | MR | Zbl
[8] Pitcher T. E, Neff B. D., Rodd F. H., Rowe L., “Multiple mating and sequential mate choice in guppies: females trade up”, Proc. Royal Soc. B: Biological Sci., 270 (2003), 1623–1629 | DOI