A multiple optimal stopping rule for sums of independent random variables
Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multiple optimal stopping rules for a finite (with horizon $N$) sequence of independent random variables. We are interested in finding a stopping rule which maximises the expected sum of $k$, $1$, observations. The optimal stopping rule and the value of the game are obtained. This result can be applied in the house-selling problem and in behavioural ecology problems.
@article{DM_2007_19_4_a2,
     author = {M. L. Nikolaev and G. Yu. Sofronov},
     title = {A multiple optimal stopping rule for sums of independent random variables},
     journal = {Diskretnaya Matematika},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/}
}
TY  - JOUR
AU  - M. L. Nikolaev
AU  - G. Yu. Sofronov
TI  - A multiple optimal stopping rule for sums of independent random variables
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 42
EP  - 51
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/
LA  - ru
ID  - DM_2007_19_4_a2
ER  - 
%0 Journal Article
%A M. L. Nikolaev
%A G. Yu. Sofronov
%T A multiple optimal stopping rule for sums of independent random variables
%J Diskretnaya Matematika
%D 2007
%P 42-51
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/
%G ru
%F DM_2007_19_4_a2
M. L. Nikolaev; G. Yu. Sofronov. A multiple optimal stopping rule for sums of independent random variables. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 42-51. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/

[1] Chao I., Robbins G., Sigmund D., Teoriya optimalnykh pravil ostanovki, Nauka, Moskva, 1977 | MR

[2] Gabor C. R., Halliday T. R., “Sequential mate choice by multiply mating smooth newts: females become more choosy”, Behavioral Ecology, 8 (1997), 162–166 | DOI

[3] Haggstrom G., “Optimal stopping and experimental design”, Ann. Math. Statist., 37 (1966), 7–29 | DOI | MR | Zbl

[4] Nikolaev M. L., “Obobschennye posledovatelnye protsedury”, Litov. matem. sb., 19:3 (1979), 35–44 | MR | Zbl

[5] Nikolaev M. L., “O kriterii optimalnosti obobschennoi posledovatelnoi protsedury”, Litov. matem. sb., 21:3 (1981), 75–82 | MR | Zbl

[6] Nikolaev M. L., “Optimalnye pravila mnogokratnoi ostanovki”, Obozrenie prikladnoi i promyshlennoi matematiki, 5:2 (1998), 309–348 | Zbl

[7] Nikolaev M. L., “Ob optimalnoi mnogokratnoi ostanovke markovskikh posledovatelnostei”, Teoriya veroyatnostei i ee primeneniya, 43:2 (1998), 374–382 | MR | Zbl

[8] Pitcher T. E, Neff B. D., Rodd F. H., Rowe L., “Multiple mating and sequential mate choice in guppies: females trade up”, Proc. Royal Soc. B: Biological Sci., 270 (2003), 1623–1629 | DOI