A multiple optimal stopping rule for sums of independent random variables
Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 42-51
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider multiple optimal stopping rules for a finite (with horizon $N$) sequence of independent random variables. We are interested in finding a stopping rule which maximises the expected sum of $k$, $1$, observations. The optimal stopping rule and the value of the game are obtained. This result can be applied in the house-selling problem and in behavioural ecology problems.
@article{DM_2007_19_4_a2,
author = {M. L. Nikolaev and G. Yu. Sofronov},
title = {A multiple optimal stopping rule for sums of independent random variables},
journal = {Diskretnaya Matematika},
pages = {42--51},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/}
}
M. L. Nikolaev; G. Yu. Sofronov. A multiple optimal stopping rule for sums of independent random variables. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 42-51. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a2/