Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2007_19_4_a10, author = {K. K. Klyuchnikov}, title = {The completion time of a~program in the case of random failures}, journal = {Diskretnaya Matematika}, pages = {150--157}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a10/} }
K. K. Klyuchnikov. The completion time of a~program in the case of random failures. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 150-157. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a10/
[1] Garg S., Huang Y., Kintala C., Trivedi K. S., “Minimizing completion time of a program by checkpointing and rejuvenation”, Proc. 1996 ACM SIGMETRICS Conf., 252–261
[2] Pfening A., Garg S., Puliafito A., Telek M., Trivedi K. S., “Optimal software rejuvenation for tolerating software failures”, Performance Evaluation, 27–28 (1996), 491–506 | Zbl
[3] Gelenbe E., “On the optimum checkpoint interval”, J. Assoc. Comput. Mach., 26 (1979), 259–270 | MR | Zbl
[4] Hong J., Kim S., Cho Y., “Cost analysis of optimistic recovery model for forked checkpointing”, IEICE Trans. Inform. Syst., E86-D, no. 3, 1534–1541
[5] Nurmi D., Wolski R., Brevik J., Model-based checkpoint scheduling for volatile resource environments, Rep. No 2004-25, UCSB Computer Sci. Techn.
[6] Nurmi D., Wolski R., Brevik J., “Minimizing the network overhead of checkpointing in cycle-harvesting cluster environments”, Proc. 2005 IEEE Intern. Conf. Cluster Computing, 1–10
[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moskva, 1976 | MR