Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2007_19_3_a6, author = {V. E. Alekseev}, title = {An upper bound for the number of maximal independent sets in a~graph}, journal = {Diskretnaya Matematika}, pages = {84--88}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2007_19_3_a6/} }
V. E. Alekseev. An upper bound for the number of maximal independent sets in a~graph. Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/DM_2007_19_3_a6/
[1] Alekseev V. E., “O chisle tupikovykh nezavisimykh mnozhestv v grafakh iz nasledstvennykh klassov”, Kombinatorno-algebraicheskie metody v diskretnoi optimizatsii, Gorkii, 1991, 5–8
[2] Balas E., Yu Ch. S., “On graphs with polynomially solvable maximum-weight clique problem”, Networks, 19 (1989), 247–253 | DOI | MR | Zbl
[3] Farber M., Hujter M., Tuza Z., “An upper bound on the number of cliques in a graph”, Networks, 23 (1993), 207–210 | DOI | MR | Zbl
[4] Moon J. W., Moser L., “On cliques in graphs”, Israel J. Math., 3 (1965), 23–28 | DOI | MR | Zbl
[5] Tsukigama S., Ide M., Ariochi H., Ozaki H., “A new algorithm for generating all the maximal independent sets”, SIAM J. Comput., 6:3 (1977), 505–517 | DOI | MR