An upper bound for the number of maximal independent sets in a~graph
Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 84-88
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T(G)$ be the number of maximal independent sets, $M(G)$ be the number of generated matchings in a graph $G$. We prove the inequality $T(G)\le M(G)+1$. As a corollary, we derive the bound $T(G)\le((m-m_1)/p+1)^p+m_1$ for a graph containing no generated subgraph $(p+1)K_2$, where $m$ is the number of edges and $m_1$ is the number of dominating edges. This inequality differs from the Balas–Yu conjecture only in the presence of the last term.
@article{DM_2007_19_3_a6,
author = {V. E. Alekseev},
title = {An upper bound for the number of maximal independent sets in a~graph},
journal = {Diskretnaya Matematika},
pages = {84--88},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_3_a6/}
}
V. E. Alekseev. An upper bound for the number of maximal independent sets in a~graph. Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/DM_2007_19_3_a6/