Periodic properties of a~simplest 2-linear shift register
Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 51-78

Voir la notice de l'article provenant de la source Math-Net.Ru

The state transition graph of a simplest self-controlled 2-linear shift register over Galois ring $R=GR(2^{rn},2^n)$ is studied. An upper bound for the length of a cycle in this graph is obtained. In the case $R=\mathbf Z_{2^n}$, states belonging to cycles of maximal length are described and the number of these states is evaluated.
@article{DM_2007_19_3_a4,
     author = {O. A. Kozlitin},
     title = {Periodic properties of a~simplest 2-linear shift register},
     journal = {Diskretnaya Matematika},
     pages = {51--78},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_3_a4/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - Periodic properties of a~simplest 2-linear shift register
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 51
EP  - 78
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_3_a4/
LA  - ru
ID  - DM_2007_19_3_a4
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T Periodic properties of a~simplest 2-linear shift register
%J Diskretnaya Matematika
%D 2007
%P 51-78
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_3_a4/
%G ru
%F DM_2007_19_3_a4
O. A. Kozlitin. Periodic properties of a~simplest 2-linear shift register. Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 51-78. http://geodesic.mathdoc.fr/item/DM_2007_19_3_a4/