The limit distribution of the size of a~giant component in an Internet-type random graph
Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 22-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a random graph which can be treated as a model of large-scale data transmission systems, including the Internet. We give conditions for existence of a giant component in such a graph and prove that the limit distribution of the size of this component is normal.
@article{DM_2007_19_3_a2,
     author = {Yu. L. Pavlov},
     title = {The limit distribution of the size of a~giant component in an {Internet-type} random graph},
     journal = {Diskretnaya Matematika},
     pages = {22--34},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_3_a2/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
TI  - The limit distribution of the size of a~giant component in an Internet-type random graph
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 22
EP  - 34
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_3_a2/
LA  - ru
ID  - DM_2007_19_3_a2
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%T The limit distribution of the size of a~giant component in an Internet-type random graph
%J Diskretnaya Matematika
%D 2007
%P 22-34
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_3_a2/
%G ru
%F DM_2007_19_3_a2
Yu. L. Pavlov. The limit distribution of the size of a~giant component in an Internet-type random graph. Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 22-34. http://geodesic.mathdoc.fr/item/DM_2007_19_3_a2/

[1] Faloutsos C., Faloutsos P., Faloutsos M., “On power-law relationships of the internet topology”, Computer Communications Rev., 29 (1999), 251–262 | DOI

[2] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Performance Evaluation, 55 (2004), 3–23 | DOI

[3] Newman M. E. Y., Strogatz S. H., Watts D. J., “Random graphs with arbitrary degree distribution and their applications”, Phys. Rev. E, 64 (2001), 026118 | DOI

[4] Janson S., Luczak T., Rucinski A., Random Graphs, Wiley, New York, 2000 | MR

[5] Pavlov Yu. L., Stepanov M. M., “Ob asimptoticheskikh svoistvakh sluchainykh grafov ‘Internet-tipa’”, Obozrenie prikladnoi i promyshlennoi matematiki, 12:3 (2005), 677

[6] Stepanov M. M., “O predelnykh raspredeleniyakh stepenei uzlov v sluchainykh grafakh ‘Internet-tipa’”, Metody matematicheskogo modelirovaniya i informatsionnye tekhnologii. Trudy Instituta prikladnykh matematicheskikh issledovanii Karelskogo nauchnogo tsentra RAN, 6 (2005), 235–242

[7] Stepanov M. M., “On the loop number of a node of a random graph of ‘Internet-type’”, Intern. workshop “Optimal stopping and stochastic control”. Extended Abst., Petrozavodsk, 2005, 65

[8] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971 | MR

[9] Gnedenko B., “Sur la distribution limite du terme maximum d'une série aléatorie”, Ann. Math., 44:3 (1943), 423–453 | DOI | MR | Zbl

[10] Deivid G., Poryadkovye statistiki, Mir, Moskva, 1979 | MR

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, Moskva, 1981 | MR | Zbl

[12] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, Moskva, 1965

[13] Vatutin V. A., “Raspredelenie rasstoyaniya do kornya minimalnogo poddereva, soderzhaschego vse vershiny dannoi vysoty”, Teoriya veroyatnostei i ee primeneniya, 38:2 (1993), 273–287 | MR | Zbl

[14] Shiryaev A. N., Veroyatnost-2, MTsNMO, Moskva, 2004