Non-asymptotic bounds for probabilities of the rank of a~random matrix over a~finite field
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 85-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a random $(n+s)\times n$ matrix $A$ with independent rows over a field of $q$ elements. In terms of the Fourier coefficients of distributions of the rows of this matrix we obtain expressions of upper and (in the case where the Fourier coefficients are non-negative quantities) lower bounds for probabilities of values of its rank. We find an upper bound for the distance in variation between the distributions of ranks of the matrix $A$ and a random equiprobable matrix. We present a condition for this distance to tend to zero as $n\to\infty$ and $s$ is fixed and demonstrate that this condition, in some natural sense, cannot be weakened.
@article{DM_2007_19_2_a9,
     author = {A. N. Alekseichuk},
     title = {Non-asymptotic bounds for probabilities of the rank of a~random matrix over a~finite field},
     journal = {Diskretnaya Matematika},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a9/}
}
TY  - JOUR
AU  - A. N. Alekseichuk
TI  - Non-asymptotic bounds for probabilities of the rank of a~random matrix over a~finite field
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 85
EP  - 93
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a9/
LA  - ru
ID  - DM_2007_19_2_a9
ER  - 
%0 Journal Article
%A A. N. Alekseichuk
%T Non-asymptotic bounds for probabilities of the rank of a~random matrix over a~finite field
%J Diskretnaya Matematika
%D 2007
%P 85-93
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a9/
%G ru
%F DM_2007_19_2_a9
A. N. Alekseichuk. Non-asymptotic bounds for probabilities of the rank of a~random matrix over a~finite field. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 85-93. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a9/

[1] Levitskaya A. A., “Sistemy sluchainykh uravnenii nad konechnymi algebraicheskimi strukturami”, Kibernetika i sistemnyi analiz, 41:1 (2005), 82–116 | MR | Zbl

[2] Masol V. V., “Explicit representation of some coefficients in the expansion of the random matrix rank distribution in the field $GF(2)$”, Theory Stoch. Process., 6(22):3–4 (2000), 122–126 | Zbl

[3] Masol V. V., “Razlozhenie po stepenyam malogo parametra raspredeleniya maksimalnogo ranga sluchainoi bulevoi matritsy”, Kibernetika i sistemnyi analiz, 38:6 (2002), 176–180 | Zbl

[4] Balakin G. V., “Sistemy sluchainykh uravnenii nad konechnym polem”, Trudy po diskretnoi matematike, 2 (1998), 21–37 | MR | Zbl

[5] Lidl R., Niderraiter G., Konechnye polya, t. 1, 2, Mir, Moskva, 1988 | Zbl

[6] Marshall A., Olkin I., Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, Moskva, 1983 | MR | Zbl