On finite groups close to completely factorisable groups
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 78-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is called complemented in $G$ if a subgroup $K$ exists in $G$ such that $G=HK$ and $H\cap K=1$. A group is called completely factorisable if each subgroup of the group is complemented. Let $D(G)$ be the subgroup of a group $G$ generated by all subgroups of $G$ which have no complements in $G$, $Z(G)$ be the centre of the group $G$, and $\Phi(G)$ be the Frattini subgroup of the group $G$. If all subgroups of $G$ are complemented in $G$, then we set $D(G)=1$. Each cyclic subgroup of the Frattini subgroup $\Phi(G)$ of the group $G$ has no complement in $G$, therefore $\Phi(G)\subseteq D(G)$. In the paper, we obtain a complete description of the structure of a finite group $G$ such that $D(G)\subseteq Z(G)\Phi(G)$.
@article{DM_2007_19_2_a8,
     author = {V. A. Vedernikov and G. V. Savicheva},
     title = {On finite groups close to completely factorisable groups},
     journal = {Diskretnaya Matematika},
     pages = {78--84},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a8/}
}
TY  - JOUR
AU  - V. A. Vedernikov
AU  - G. V. Savicheva
TI  - On finite groups close to completely factorisable groups
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 78
EP  - 84
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a8/
LA  - ru
ID  - DM_2007_19_2_a8
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%A G. V. Savicheva
%T On finite groups close to completely factorisable groups
%J Diskretnaya Matematika
%D 2007
%P 78-84
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a8/
%G ru
%F DM_2007_19_2_a8
V. A. Vedernikov; G. V. Savicheva. On finite groups close to completely factorisable groups. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 78-84. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a8/

[1] Hall P., “Complemented groups”, J. London Math. Soc., 12:47 (1937), 201–204 | DOI

[2] Chernikova N. V., “Gruppy s dopolnyaemymi podgruppami”, Matem. sb., 39(81) (1956), 273–292 | Zbl

[3] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, Moskva, 1980 | MR

[4] Dovzhenko S. A., “K teoreme N. V. Chernikovoi o vpolne faktorizuemykh gruppakh”, Ukr. matem. zh., 51:6 (1999), 854–855 | MR | Zbl

[5] Chernikov S. N., “Gruppy, imeyuschie separiruyuschie podgruppy”, Gruppy s zadannymi svoistvami podgrupp, In-t matematiki AN USSR, Kiev, 1973, 6–14

[6] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, Moskva, 1978 | MR | Zbl

[7] Kholl M., Teoriya grupp, IL, Moskva, 1962

[8] Huppert B., Endliche Gruppen. I, Springer, Berlin, 1967 | MR | Zbl