A lower bound for the 4-satisfiability threshold
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 101-108
Let $F_k(n,m)$ be a random $k$-conjunctive normal form obtained by selecting uniformly and independently $m$ out of all possible $k$-clauses on $n$ variables. We prove that if $F_4(n,rn)$ is unsatisfiable with probability tending to one as $n\to\infty$, then $r\ge8.09$. This sharpens the known lower bound $r\ge7.91$.
@article{DM_2007_19_2_a11,
author = {F. Yu. Vorob'ev},
title = {A lower bound for the 4-satisfiability threshold},
journal = {Diskretnaya Matematika},
pages = {101--108},
year = {2007},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a11/}
}
F. Yu. Vorob'ev. A lower bound for the 4-satisfiability threshold. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 101-108. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a11/
[1] Achlioptas D., Peres Y., “The threshold for random $k$-SAT is $2^k\ln2-O(k)$”, STOC, 2003, 223–231 | MR
[2] Friedgut E., “Necessary and sufficient conditions for sharp thresholds of graph properties, and the $k$-SAT problem”, J. Amer. Math. Soc., 12 (1999), 1017–1054 | DOI | MR | Zbl
[3] de Bruijn N. G., Asymptotic methods in analysis, Dover, New York, 1981 | MR | Zbl