On representation of $k$-valued logic functions by a~sum of products of subfunctions
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 94-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of variables of a $k$-valued logic function $f(x_1,\dots,x_n)$ is partitioned into $t$ parts, $t>1$, and a polynomial representation of the function $f$ is considered where the terms are products of all possible subfunctions corresponding to the partitioning. We analyse conditions under which an arbitrary function admits a representation in such a polynomial form.
@article{DM_2007_19_2_a10,
     author = {V. I. Panteleev and N. A. Peryazev},
     title = {On representation of $k$-valued logic functions by a~sum of products of subfunctions},
     journal = {Diskretnaya Matematika},
     pages = {94--100},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a10/}
}
TY  - JOUR
AU  - V. I. Panteleev
AU  - N. A. Peryazev
TI  - On representation of $k$-valued logic functions by a~sum of products of subfunctions
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 94
EP  - 100
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a10/
LA  - ru
ID  - DM_2007_19_2_a10
ER  - 
%0 Journal Article
%A V. I. Panteleev
%A N. A. Peryazev
%T On representation of $k$-valued logic functions by a~sum of products of subfunctions
%J Diskretnaya Matematika
%D 2007
%P 94-100
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a10/
%G ru
%F DM_2007_19_2_a10
V. I. Panteleev; N. A. Peryazev. On representation of $k$-valued logic functions by a~sum of products of subfunctions. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 94-100. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a10/

[1] Zhegalkin I. I., “Arifmetizatsiya simvolicheskoi logiki”, Matem. sb., 36 (1929), 205–338 | Zbl

[2] Vinokurov S. F., Peryazev N. A., “Razlozhenie bulevykh funktsii v summu proizvedenii sobstvennykh podfunktsii”, Diskretnaya matematika, 5:3 (1993), 102–104 | MR | Zbl

[3] Skornyakov L. A., Dedekindovy struktury s dopolneniyami i regulyarnye koltsa, Fizmatgiz, Moskva, 1961

[4] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | MR | Zbl

[5] Vinokurov S. F., Panteleev V. I., “Polinomialnoe predstavlenie bulevykh funktsii s ispolzovaniem tolko ostatochnykh funktsii”, Trudy XII Baikalskoi mezhdunarodnoi konf., t. 5, Irkutsk, 2001, 27–31