@article{DM_2007_19_1_a3,
author = {V. G. Mikhailov},
title = {Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set},
journal = {Diskretnaya Matematika},
pages = {17--26},
year = {2007},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a3/}
}
V. G. Mikhailov. Limit theorems for the number of solutions of a system of random linear equations belonging to a given set. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a3/
[1] Kopyttsev V. A., “O chisle reshenii sistem lineinykh bulevykh uravnenii v mnozhestve vektorov, obladayuschikh zadannym chislom edinits”, Diskretnaya matematika, 14:4 (2002), 87–109 | Zbl
[2] Kopyttsev V. A., “Sistemy lineinykh uravnenii s ogranicheniyami dlya znachenii neizvestnykh”, Obozrenie prikladnoi i promyshlennoi matematiki, 11 (2004), 241–242
[3] Mikhailov V. G., “Predelnye teoremy dlya chisla tochek sluchainogo lineinogo podprostranstva, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 15:2 (2003), 128–137. | Zbl
[4] Mikhailov V. G., “Predelnye teoremy dlya chisla nenulevykh reshenii odnoi sistemy sluchainykh uravnenii nad polem $\mathit{GF}(2)$”, Teoriya veroyatnostei i ee primeneniya, 43:3 (1998), 598–606 | Zbl
[5] Mikhailov V. G., “Predelnye teoremy dlya chisla nenulevykh reshenii odnoi sistemy sluchainykh uravnenii nad polem $\mathit{GF}(2)$”, Diskretnaya matematika, 12:1 (2000), 70–81
[6] Mikhailov V. G., “Predelnaya teorema Puassona dlya chisla nekollinearnykh reshenii sistemy sluchainykh uravnenii spetsialnogo vida”, Diskretnaya matematika, 13:3 (2001), 81–90