Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set
Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the asymptotic behaviour of the distribution of the number $\xi(B)$ of the solutions of a system of homogeneous random linear equations $Ax=0$ (the $T\times n$ matrix $A$ is composed of independent random variables $a_{i,j}$ uniformly distributed on a set of elements of a finite field $K$) which belong to some given set $B$ of non-zero $n$-dimensional vectors over the field $K$. We consider the case where, under a concordant growth of the parameters $n,T\to\infty$ and variations of the sets $B_1,\dots,B_s$ such that the mean values converge to finite limits, the limit distribution of the vector $(\xi(B_1),\dots,\xi(B_s))$ is an $s$-dimensional compound Poisson distribution. We give sufficient conditions for this convergence and find parameters of the limit distribution. We consider in detail the special case where $B_k$ is the set of vectors which do not contain a certain element $k\in K$.
@article{DM_2007_19_1_a3,
     author = {V. G. Mikhailov},
     title = {Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set},
     journal = {Diskretnaya Matematika},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a3/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 17
EP  - 26
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_1_a3/
LA  - ru
ID  - DM_2007_19_1_a3
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set
%J Diskretnaya Matematika
%D 2007
%P 17-26
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_1_a3/
%G ru
%F DM_2007_19_1_a3
V. G. Mikhailov. Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a3/

[1] Kopyttsev V. A., “O chisle reshenii sistem lineinykh bulevykh uravnenii v mnozhestve vektorov, obladayuschikh zadannym chislom edinits”, Diskretnaya matematika, 14:4 (2002), 87–109 | Zbl

[2] Kopyttsev V. A., “Sistemy lineinykh uravnenii s ogranicheniyami dlya znachenii neizvestnykh”, Obozrenie prikladnoi i promyshlennoi matematiki, 11 (2004), 241–242

[3] Mikhailov V. G., “Predelnye teoremy dlya chisla tochek sluchainogo lineinogo podprostranstva, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 15:2 (2003), 128–137. | Zbl

[4] Mikhailov V. G., “Predelnye teoremy dlya chisla nenulevykh reshenii odnoi sistemy sluchainykh uravnenii nad polem $\mathit{GF}(2)$”, Teoriya veroyatnostei i ee primeneniya, 43:3 (1998), 598–606 | Zbl

[5] Mikhailov V. G., “Predelnye teoremy dlya chisla nenulevykh reshenii odnoi sistemy sluchainykh uravnenii nad polem $\mathit{GF}(2)$”, Diskretnaya matematika, 12:1 (2000), 70–81

[6] Mikhailov V. G., “Predelnaya teorema Puassona dlya chisla nekollinearnykh reshenii sistemy sluchainykh uravnenii spetsialnogo vida”, Diskretnaya matematika, 13:3 (2001), 81–90