Implications of a~system of linear equations over a~module
Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 133-140
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the class $L(R)$ of all left modules over a ring $R$ such that for any matrix $D$ over $R$ and any solvable system of equations
$$
F\eta^\downarrow=\gamma^\downarrow
$$
over a module from $L(R)$ the system of equations
$$
A\xi^\downarrow=\beta^\downarrow
$$
is its $D$-implication if and only if
$$
T(F,\gamma^\downarrow)=(AD,\beta^\downarrow)
$$
for some matrix $T$. If $R$ is a quasi-Frobenius ring, then $L(R)$ contains the subclass of all faithful $R$-modules. A criterion for a system of equations over a module from $L(R)$ to be definite is obtained.
@article{DM_2007_19_1_a13,
author = {V. P. Elizarov},
title = {Implications of a~system of linear equations over a~module},
journal = {Diskretnaya Matematika},
pages = {133--140},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a13/}
}
V. P. Elizarov. Implications of a~system of linear equations over a~module. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 133-140. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a13/