Implications of a~system of linear equations over a~module
Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 133-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the class $L(R)$ of all left modules over a ring $R$ such that for any matrix $D$ over $R$ and any solvable system of equations $$ F\eta^\downarrow=\gamma^\downarrow $$ over a module from $L(R)$ the system of equations $$ A\xi^\downarrow=\beta^\downarrow $$ is its $D$-implication if and only if $$ T(F,\gamma^\downarrow)=(AD,\beta^\downarrow) $$ for some matrix $T$. If $R$ is a quasi-Frobenius ring, then $L(R)$ contains the subclass of all faithful $R$-modules. A criterion for a system of equations over a module from $L(R)$ to be definite is obtained.
@article{DM_2007_19_1_a13,
     author = {V. P. Elizarov},
     title = {Implications of a~system of linear equations over a~module},
     journal = {Diskretnaya Matematika},
     pages = {133--140},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a13/}
}
TY  - JOUR
AU  - V. P. Elizarov
TI  - Implications of a~system of linear equations over a~module
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 133
EP  - 140
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_1_a13/
LA  - ru
ID  - DM_2007_19_1_a13
ER  - 
%0 Journal Article
%A V. P. Elizarov
%T Implications of a~system of linear equations over a~module
%J Diskretnaya Matematika
%D 2007
%P 133-140
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_1_a13/
%G ru
%F DM_2007_19_1_a13
V. P. Elizarov. Implications of a~system of linear equations over a~module. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 133-140. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a13/

[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, t. 1, 2, Gelios ARV, Moskva, 2003

[2] Elizarov V. P., “Sistemy lineinykh uravnenii nad kvazifrobeniusovymi koltsami”, Fundament. i prikl. matem., 1:2 (1995), 535–539 | MR | Zbl

[3] Elizarov V. P., “Opredelennye sistemy lineinykh uravnenii nad koltsami”, Fundament. i prikl. matem., 4:4 (1998), 1307–1313 | MR | Zbl

[4] Elizarov V. P., “Metody uproscheniya sistem lineinykh uravnenii nad modulyami. I”, Trudy po diskretnoi matematike, 7 (2003), 56–74 | MR

[5] Kash F., Moduli i koltsa, Mir, Moskva, 1981

[6] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundament. i prikl. matem., 1:1 (1995), 229–254 | MR | Zbl

[7] Hall M., “A type of algebraic closure”, Ann. Math., 40 (1939), 360–369 | DOI | MR | Zbl