Mark sequences in multigraphs
Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $r$-digraph is an orientation of a multigraph which has no loops and contains at most $r$ edges between any pair of distinct vertices. We give a simple proof of necessary and sufficient conditions for a sequence of non-negative integers arranged in nondecreasing order to be a sequence of numbers, called marks or $r$-scores, attached to the vertices of an $r$-digraph.
@article{DM_2007_19_1_a10,
     author = {Sh. Pirzada},
     title = {Mark sequences in multigraphs},
     journal = {Diskretnaya Matematika},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a10/}
}
TY  - JOUR
AU  - Sh. Pirzada
TI  - Mark sequences in multigraphs
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 89
EP  - 94
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_1_a10/
LA  - ru
ID  - DM_2007_19_1_a10
ER  - 
%0 Journal Article
%A Sh. Pirzada
%T Mark sequences in multigraphs
%J Diskretnaya Matematika
%D 2007
%P 89-94
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_1_a10/
%G ru
%F DM_2007_19_1_a10
Sh. Pirzada. Mark sequences in multigraphs. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 89-94. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a10/

[1] Avey P., “Score sequences of oriented graphs”, J. Graph Theory, 15 (1991), 251–257 | DOI | MR

[2] Landau M. G., “On dominance relations and the structure of animal societies. III. The condition for a score structure”, Bull. Math. Biophys., 15 (1953), 143–148 | DOI | MR

[3] Pirzada S., Samee U., “Mark sequences in digraphs”, Seminare Lotharingien de Combinatoire, 55 (2006), Art.B55c. | MR

[4] Pirzada S., Naikoo T. A., “Inequalities on marks in digraphs”, J. Math. Inequalities Appl., 9:2 (2006), 189–198 | MR | Zbl