Mark sequences in multigraphs
Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 89-94
Cet article a éte moissonné depuis la source Math-Net.Ru
An $r$-digraph is an orientation of a multigraph which has no loops and contains at most $r$ edges between any pair of distinct vertices. We give a simple proof of necessary and sufficient conditions for a sequence of non-negative integers arranged in nondecreasing order to be a sequence of numbers, called marks or $r$-scores, attached to the vertices of an $r$-digraph.
@article{DM_2007_19_1_a10,
author = {Sh. Pirzada},
title = {Mark sequences in multigraphs},
journal = {Diskretnaya Matematika},
pages = {89--94},
year = {2007},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a10/}
}
Sh. Pirzada. Mark sequences in multigraphs. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 89-94. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a10/
[1] Avey P., “Score sequences of oriented graphs”, J. Graph Theory, 15 (1991), 251–257 | DOI | MR
[2] Landau M. G., “On dominance relations and the structure of animal societies. III. The condition for a score structure”, Bull. Math. Biophys., 15 (1953), 143–148 | DOI | MR
[3] Pirzada S., Samee U., “Mark sequences in digraphs”, Seminare Lotharingien de Combinatoire, 55 (2006), Art.B55c. | MR
[4] Pirzada S., Naikoo T. A., “Inequalities on marks in digraphs”, J. Math. Inequalities Appl., 9:2 (2006), 189–198 | MR | Zbl