A class of subcritical branching processes with immigration and infinite number of types of particles
Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 6-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a subcritical branching process with immigration, infinite number of types $T_1,T_2,\ldots$ of particles, and discrete time. The state of the process at the moment of time $t$ is the set of vectors $$ \vec{\xi}(r,t)=(\xi_1(t),\xi_2(t),\dots,\xi_r(t)), \qquad r\ge1, $$ where $\xi_i(t)$ is the number of particles of type $T_i$ at the moment of time $t$, $i=1,2,\ldots$ It is assumed that at each moment of time only particles of type $T_1$ immigrate and each particle of type $T_i$ turns into a set of particles of types $T_i$ and $T_{i+1}$. It is proved that the probability distributions of the vectors $\vec{\xi}(r,t)$ converge as $t\to\infty$ to discrete limit distributions.
@article{DM_2007_19_1_a1,
     author = {B. A. Sevast'yanov},
     title = {A class of subcritical branching processes with immigration and infinite number of types of particles},
     journal = {Diskretnaya Matematika},
     pages = {6--10},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a1/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
TI  - A class of subcritical branching processes with immigration and infinite number of types of particles
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 6
EP  - 10
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_1_a1/
LA  - ru
ID  - DM_2007_19_1_a1
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%T A class of subcritical branching processes with immigration and infinite number of types of particles
%J Diskretnaya Matematika
%D 2007
%P 6-10
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_1_a1/
%G ru
%F DM_2007_19_1_a1
B. A. Sevast'yanov. A class of subcritical branching processes with immigration and infinite number of types of particles. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 6-10. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a1/

[1] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971

[2] Kesten H., Stigum B. P., “A limit theorem for multidimensional Galton–Watson processes”, Ann. Math. Statist., 37:5 (1966), 1211–1223 | DOI | MR | Zbl