On a class of cell circuits
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 84-98
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a class of cell circuits, $T$-circuits, and describe a connection between the lower bound for the area and the depth of the circuits of this class: the less the depth the greater the area of a circuit. We give examples of $T$-circuits with logarithmic depth in the problem of calculation of $n$ prefix sums and also of sums and differences of two $n$-digit numbers. It is shown that the area of these circuits is $O(n\log n)$ and has the optimal order.
@article{DM_2006_18_4_a7,
author = {D. A. Zhukov},
title = {On a class of cell circuits},
journal = {Diskretnaya Matematika},
pages = {84--98},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a7/}
}
D. A. Zhukov. On a class of cell circuits. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 84-98. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a7/