On a class of cell circuits
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 84-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of cell circuits, $T$-circuits, and describe a connection between the lower bound for the area and the depth of the circuits of this class: the less the depth the greater the area of a circuit. We give examples of $T$-circuits with logarithmic depth in the problem of calculation of $n$ prefix sums and also of sums and differences of two $n$-digit numbers. It is shown that the area of these circuits is $O(n\log n)$ and has the optimal order.
@article{DM_2006_18_4_a7,
     author = {D. A. Zhukov},
     title = {On a class of cell circuits},
     journal = {Diskretnaya Matematika},
     pages = {84--98},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a7/}
}
TY  - JOUR
AU  - D. A. Zhukov
TI  - On a class of cell circuits
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 84
EP  - 98
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a7/
LA  - ru
ID  - DM_2006_18_4_a7
ER  - 
%0 Journal Article
%A D. A. Zhukov
%T On a class of cell circuits
%J Diskretnaya Matematika
%D 2006
%P 84-98
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_4_a7/
%G ru
%F DM_2006_18_4_a7
D. A. Zhukov. On a class of cell circuits. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 84-98. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a7/