Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2006_18_4_a5, author = {S. B. Gashkov and I. S. Sergeev}, title = {An application of the method of additive chains to inversion in finite fields}, journal = {Diskretnaya Matematika}, pages = {56--72}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/} }
TY - JOUR AU - S. B. Gashkov AU - I. S. Sergeev TI - An application of the method of additive chains to inversion in finite fields JO - Diskretnaya Matematika PY - 2006 SP - 56 EP - 72 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/ LA - ru ID - DM_2006_18_4_a5 ER -
S. B. Gashkov; I. S. Sergeev. An application of the method of additive chains to inversion in finite fields. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 56-72. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/
[1] Agnew G. B., Beth T., Mullin R. C., Vanstone S. A., “Arithmetic operations in $\operatorname{\mathit{GF}}(2^m)$”, J. Crypt., 6 (1993), 3–13 | DOI | MR | Zbl
[2] Litow B., Davida G., “$O(\log n)$ parallel time finite field inversion”, Lecture Notes Computer Sci., 319, 1988, 74–80 | MR | Zbl
[3] Von zur Gathen J., “Inversion in finite fields using logarithmic depth”, J. Symb. Comput., 9 (1990), 175–183 | DOI | MR | Zbl
[4] Knut D., Iskusstvo programmirovaniya, t. 2: Poluchislennye algoritmy, Vilyams, Moskva, 2004
[5] Von zur Gathen J., Nöcker M., “Exponentiation in finite fields: theory and practice”, Lecture Notes Computer Sci., 1255, 1997, 88–113 | MR | Zbl
[6] Itoh T., Tsujii S., “A fast algorithm for computing multiplicative inverses in $\operatorname{\mathit{GF}}(2^n)$ using normal basis”, Inform. Comput., 78 (1988), 171–177 | DOI | MR | Zbl
[7] Takagi N., Yoshiki J., Takagi K., “A fast algorithm for multiplicative inversion in $\operatorname{\mathit{GF}}(2^n)$ using normal basis”, IEEE Trans. Comput., 50:5 (2001), 394–398 | DOI | MR
[8] Chang K., Kim H., Kang J., Cho H., “An extension of TYT algorithm for $\operatorname{\mathit{GF}}((2^n)^m)$ using precomputation”, Inform. Proc. Lett., 92 (2004), 231–234 | DOI | MR
[9] Yao A. C., “On the evaluation of powers”, SIAM J. Comput., 5 (1976), 100–103 | DOI | MR | Zbl
[10] Von zur Gathen J., Gerhard J., Modern computer algebra, Cambridge Univ. Press, Cambridge, 1999 | MR
[11] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, Moskva, 1984
[12] Massey J. L., Omura J. K., Apparatus for finite fields computation, US Patent Application 1986, No4587627
[13] Bolotov A. A., Gashkov S. B., “O bystrom umnozhenii v normalnykh bazisakh konechnykh polei”, Diskretnaya matematika, 13:3 (2001), 3–31
[14] Gao S., von zur Gathen J., Panario D., Shoup V., “Algorithm for exponentiation in finite field”, J. Symb. Comput., 29 (2000), 879–889 | DOI | MR | Zbl
[15] Gashkov S. B., Khokhlov R. A., “O glubine logicheskikh skhem dlya operatsii v polyakh $\operatorname{\mathit{GF}}(2^{n})$”, Chebyshevskii sbornik, 4:4(8) (2003), 59–71 | MR
[16] Pan V., “Complexity of parallel matrix computations”, Theor. Comput. Sci., 54 (1987), 65–85 | DOI | MR | Zbl