An application of the method of additive chains to inversion in finite fields
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 56-72

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimates of complexity and depth of Boolean inverter circuits in normal and polynomial bases of finite fields. In particular, we show that it is possible to construct a Boolean inverter circuit in the normal basis of the field $\mathit{GF}(2^n)$ whose complexity is at most $(\lambda(n-1)+(1+o(1))\lambda(n)/\lambda(\lambda(n)))M(n)$ and the depth is at most $(\lambda(n-1)+2)D(n)$, where $M(n)$, $D(n)$ are the complexity and the depth, respectively, of the circuits for multiplication in this basis and $\lambda(n)=\lfloor\log_2n\rfloor$.
@article{DM_2006_18_4_a5,
     author = {S. B. Gashkov and I. S. Sergeev},
     title = {An application of the method of additive chains to inversion in finite fields},
     journal = {Diskretnaya Matematika},
     pages = {56--72},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/}
}
TY  - JOUR
AU  - S. B. Gashkov
AU  - I. S. Sergeev
TI  - An application of the method of additive chains to inversion in finite fields
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 56
EP  - 72
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/
LA  - ru
ID  - DM_2006_18_4_a5
ER  - 
%0 Journal Article
%A S. B. Gashkov
%A I. S. Sergeev
%T An application of the method of additive chains to inversion in finite fields
%J Diskretnaya Matematika
%D 2006
%P 56-72
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/
%G ru
%F DM_2006_18_4_a5
S. B. Gashkov; I. S. Sergeev. An application of the method of additive chains to inversion in finite fields. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 56-72. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/