An application of the method of additive chains to inversion in finite fields
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 56-72
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain estimates of complexity and depth of Boolean inverter circuits in normal and polynomial bases of finite fields. In particular, we show that it is possible to construct a Boolean inverter circuit in the normal basis of the field $\mathit{GF}(2^n)$ whose complexity is at most $(\lambda(n-1)+(1+o(1))\lambda(n)/\lambda(\lambda(n)))M(n)$ and the depth is at most $(\lambda(n-1)+2)D(n)$, where $M(n)$, $D(n)$ are the complexity and the depth, respectively, of the circuits for multiplication in this basis and $\lambda(n)=\lfloor\log_2n\rfloor$.
@article{DM_2006_18_4_a5,
author = {S. B. Gashkov and I. S. Sergeev},
title = {An application of the method of additive chains to inversion in finite fields},
journal = {Diskretnaya Matematika},
pages = {56--72},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/}
}
TY - JOUR AU - S. B. Gashkov AU - I. S. Sergeev TI - An application of the method of additive chains to inversion in finite fields JO - Diskretnaya Matematika PY - 2006 SP - 56 EP - 72 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/ LA - ru ID - DM_2006_18_4_a5 ER -
S. B. Gashkov; I. S. Sergeev. An application of the method of additive chains to inversion in finite fields. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 56-72. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a5/