Examples of $\alpha$-complete systems of $k$-valued logic for $k=3,4$
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 45-55
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we prove the $\alpha$-completeness of finite systems of function of $k$-valued logic for $k=3,4$ containing all permutations of the symmetric group $S_k$ on the set $E_k=\{0,1,\dots,k-1\}$, the operation of addition modulo $k$, and $k$ certain binary operation. This result is extended to some other systems of functions which are obtained by replacing the operation of addition by some quasi-group operation.
@article{DM_2006_18_4_a4,
author = {A. L. Shabunin},
title = {Examples of $\alpha$-complete systems of $k$-valued logic for $k=3,4$},
journal = {Diskretnaya Matematika},
pages = {45--55},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a4/}
}
A. L. Shabunin. Examples of $\alpha$-complete systems of $k$-valued logic for $k=3,4$. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 45-55. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a4/