@article{DM_2006_18_4_a3,
author = {S. A. Volkov},
title = {An example of a~simple quasi-universal function in the class $\mathcal E^2$ of the {Grzegorczyk} hierarchy},
journal = {Diskretnaya Matematika},
pages = {31--44},
year = {2006},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a3/}
}
S. A. Volkov. An example of a simple quasi-universal function in the class $\mathcal E^2$ of the Grzegorczyk hierarchy. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 31-44. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a3/
[1] Gzhegorchik A., “Nekotorye klassy rekursivnykh funktsii”, Problemy matematicheskoi logiki, Mir, Moskva, 1970, 9–49
[2] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, Moskva, 1986
[3] Marchenkov C. S., “Bazisy po superpozitsii v klassakh rekursivnykh funktsii”, Matem. voprosy kibernetiki, 3 (1991), 115–139 | Zbl
[4] Marchenkov S. S., “Ob ogranichennykh rekursiyakh”, Mathematica Balkanica, 2 (1972), 124–142 | MR | Zbl
[5] Marchenkov C. S., “Ob odnom bazise po superpozitsii v klasse funktsii, elementarnykh po Kalmaru”, Matem. zametki, 27:3 (1980), 321–332 | MR | Zbl
[6] Marchenkov C. S., “Prostye primery bazisov po superpozitsii v klasse funktsii, elementarnykh po Kalmaru”, Banach Center Publ., 25 (1989), 119–126
[7] Marchenkov S. S., Elementarnye rekursivnye funktsii, MTsNMO, Moskva, 2003
[8] Minskii M., Vychisleniya i avtomaty, Mir, Moskva, 1971