On the structure of equationally closed classes
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 18-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of equationally closed classes. We prove a theorem on representation of the graph of a function in an equationally closed class in the form of a union of the sets of values of special vector functions. For any $k\ge2$ we establish the equational generability of any equationally closed class in $P_k$ by the set of all its $k$-place functions. We find all equationally precomplete classes in $P_k$ and prove a criterion of equational completeness. Some results are extended from equationally closed classes to positively closed classes.
@article{DM_2006_18_4_a2,
     author = {S. S. Marchenkov},
     title = {On the structure of equationally closed classes},
     journal = {Diskretnaya Matematika},
     pages = {18--30},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a2/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On the structure of equationally closed classes
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 18
EP  - 30
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a2/
LA  - ru
ID  - DM_2006_18_4_a2
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On the structure of equationally closed classes
%J Diskretnaya Matematika
%D 2006
%P 18-30
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_4_a2/
%G ru
%F DM_2006_18_4_a2
S. S. Marchenkov. On the structure of equationally closed classes. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 18-30. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a2/