Nonlinear codes from modified Butson--Hadamard matrices
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 137-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p\geq 3$ be a prime number. In this paper we construct two families of nonlinear $p$-ary codes derived from the corresponding families of modified Butson–Hadamard matrices. These codes have the minimal distances close to the Plotkin bound and very easy construction and decoding procedures. Moreover, for some of these codes the Plotkin bound is attained.
@article{DM_2006_18_4_a12,
     author = {S. A. Stepanov},
     title = {Nonlinear codes from modified {Butson--Hadamard} matrices},
     journal = {Diskretnaya Matematika},
     pages = {137--147},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a12/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - Nonlinear codes from modified Butson--Hadamard matrices
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 137
EP  - 147
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a12/
LA  - ru
ID  - DM_2006_18_4_a12
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T Nonlinear codes from modified Butson--Hadamard matrices
%J Diskretnaya Matematika
%D 2006
%P 137-147
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_4_a12/
%G ru
%F DM_2006_18_4_a12
S. A. Stepanov. Nonlinear codes from modified Butson--Hadamard matrices. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 137-147. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a12/

[1] Baliga A., “New self-dual codes from cocyclic Hadamard matrices”, J. Comb. Math. Comb. Comput., 28 (1982), 7–14 | MR

[2] Butson K. T., “Generalized Hadamard matrices”, Proc. Amer. Math. Soc., 13 (1962), 894–898 | DOI | MR

[3] Elliot K. F., Rao R. R., Fast transforms: algorithms, analyses, applications, Academic Press, New York, 1982 | MR

[4] Horadam K. J., Udaya P., “Cocyclic Hadamard codes”, IEEE Trans. Inform. Theory, 46 (2000), 1545–1550 | DOI | MR | Zbl

[5] De Launcy W., “Generalized Hadamard matrices whose rows and columns form a group”, Lecture Notes Math., 1036, 1983, 154–176 | MR

[6] Maslen D. K., Rockmore D. N., “Generalized FFTs—a survey of some recent results”, DIMACS, 28 (1997), 183–237 | MR | Zbl

[7] Pinnawala N., Rao A., “Cocyclic simplex codes of type $\alpha$ over $\mathbf Z_4$ and $\mathbf Z_2$”, IEEE Trans. Inform. Theory, 50 (2004), 2165–2169 | DOI | MR

[8] Stepanov S. A., “A new class of quaternary codes”, Inform. Transm. Probl., 42:1 (2006), 3–12 | MR | Zbl

[9] Stepanov S. A., “A new class of nonlinear senary codes”, Inform. Transm. Probl., 42:2 (2006), 53–62 | MR

[10] Stepanov S. A., “Novyi klass pyaterichnykh kodov”, Diskretnaya matematika, 17:4 (2005), 7–17 | MR