Asymptotic formula for the number of points of a~lattice in the circle on the Lobachevsky plane
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 9-17
Voir la notice de l'article provenant de la source Math-Net.Ru
We define the distance $d=d(z,z')$ between points $z=x+iy$ and $z'=x'+iy'$ in the upper half-plane, setting
$$
d=\ln\biggl(\frac{u+2+\sqrt{u^2+4u}}2\biggr),
$$
where
$$
u=\frac{|z-z'|^2}{yy'}\,.
$$
The circle $K(z_0,T)$ with centre in a point $z_0$ consists of the points $z$ satisfying the inequality $d(z,z_0)\leq T$. Let $N(z_0,T)$ be the number of elements $\gamma$ of the modular group $\mathit{PSL}_2(\mathbf Z)$ such that the point $\gamma z_0$ lies in the circle $K(z_0,T)$. In this paper, we refine the remainder term in the asymptotic formula for $N(z_0,T)$.
@article{DM_2006_18_4_a1,
author = {G. I. Arkhipov and V. N. Chubarikov},
title = {Asymptotic formula for the number of points of a~lattice in the circle on the {Lobachevsky} plane},
journal = {Diskretnaya Matematika},
pages = {9--17},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a1/}
}
TY - JOUR AU - G. I. Arkhipov AU - V. N. Chubarikov TI - Asymptotic formula for the number of points of a~lattice in the circle on the Lobachevsky plane JO - Diskretnaya Matematika PY - 2006 SP - 9 EP - 17 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a1/ LA - ru ID - DM_2006_18_4_a1 ER -
G. I. Arkhipov; V. N. Chubarikov. Asymptotic formula for the number of points of a~lattice in the circle on the Lobachevsky plane. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 9-17. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a1/