Asymptotic formula for the number of points of a~lattice in the circle on the Lobachevsky plane
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 9-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the distance $d=d(z,z')$ between points $z=x+iy$ and $z'=x'+iy'$ in the upper half-plane, setting $$ d=\ln\biggl(\frac{u+2+\sqrt{u^2+4u}}2\biggr), $$ where $$ u=\frac{|z-z'|^2}{yy'}\,. $$ The circle $K(z_0,T)$ with centre in a point $z_0$ consists of the points $z$ satisfying the inequality $d(z,z_0)\leq T$. Let $N(z_0,T)$ be the number of elements $\gamma$ of the modular group $\mathit{PSL}_2(\mathbf Z)$ such that the point $\gamma z_0$ lies in the circle $K(z_0,T)$. In this paper, we refine the remainder term in the asymptotic formula for $N(z_0,T)$.
@article{DM_2006_18_4_a1,
     author = {G. I. Arkhipov and V. N. Chubarikov},
     title = {Asymptotic formula for the number of points of a~lattice in the circle on the {Lobachevsky} plane},
     journal = {Diskretnaya Matematika},
     pages = {9--17},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a1/}
}
TY  - JOUR
AU  - G. I. Arkhipov
AU  - V. N. Chubarikov
TI  - Asymptotic formula for the number of points of a~lattice in the circle on the Lobachevsky plane
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 9
EP  - 17
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a1/
LA  - ru
ID  - DM_2006_18_4_a1
ER  - 
%0 Journal Article
%A G. I. Arkhipov
%A V. N. Chubarikov
%T Asymptotic formula for the number of points of a~lattice in the circle on the Lobachevsky plane
%J Diskretnaya Matematika
%D 2006
%P 9-17
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_4_a1/
%G ru
%F DM_2006_18_4_a1
G. I. Arkhipov; V. N. Chubarikov. Asymptotic formula for the number of points of a~lattice in the circle on the Lobachevsky plane. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 9-17. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a1/