On values of the affine rank of the support of spectrum of a~plateaued function
Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 120-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the affine rank of any plateaued function with spectrum support of cardinality 16 is equal to 4, 5 or 6. For any positive integer $h$, we consider plateaued functions with spectrum support of cardinality $4^h$, give bounds for the affine rank of such functions and construct functions with affine rank equal to any possible value from $2h$ to $2^{h+1}-2$.
@article{DM_2006_18_3_a9,
     author = {Yu. V. Tarannikov},
     title = {On values of the affine rank of the support of spectrum of a~plateaued function},
     journal = {Diskretnaya Matematika},
     pages = {120--137},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_3_a9/}
}
TY  - JOUR
AU  - Yu. V. Tarannikov
TI  - On values of the affine rank of the support of spectrum of a~plateaued function
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 120
EP  - 137
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_3_a9/
LA  - ru
ID  - DM_2006_18_3_a9
ER  - 
%0 Journal Article
%A Yu. V. Tarannikov
%T On values of the affine rank of the support of spectrum of a~plateaued function
%J Diskretnaya Matematika
%D 2006
%P 120-137
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_3_a9/
%G ru
%F DM_2006_18_3_a9
Yu. V. Tarannikov. On values of the affine rank of the support of spectrum of a~plateaued function. Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 120-137. http://geodesic.mathdoc.fr/item/DM_2006_18_3_a9/

[1] Kuznetsov Yu. V., “O nositelyakh platovidnykh funktsii”, Materialy VIII Mezhdunarodnogo seminara «Diskretnaya matematika i ee prilozheniya», MGU, Moskva, 2004, 424–426

[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptografii, MTsNMO, Moskva, 2004

[3] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matem. voprosy kibernetiki, 11 (2002), 91–148

[4] Tarannikov Yu. V., “O platovidnykh ustoichivykh funktsiyakh”, Materialy VIII Mezhdunarodnogo seminara «Diskretnaya matematika i ee prilozheniya», MGU, Moskva, 2004, 431–435

[5] Carlet C., Charpin P., “Cubic Boolean functions with highest resiliency”, Proc. 2004 IEEE Intern. Symposium on Inform. Theory, 2004, 497 | MR

[6] Carlet C., Sarkar P., “Spectral domain analysis of correlation immune and resilient Boolean functions”, Finite Fields Appl., 8 (2002), 120–130 | DOI | MR | Zbl

[7] Kasami T., Tokura N., Azumi S., “On the weight enumeration of weights less than $2.5d$ of Reed–Muller codes”, Information and Control, 30:4 (1976), 380–395 | DOI | MR | Zbl

[8] Pei D., Qin W., “The correlation of a Boolean function with its variables”, Lecture Notes Computer Sci., 2000, 1–8 | MR

[9] Zheng Y., Zhang X.-M., “Plateaued functions”, Lecture Notes Computer Sci., 1726, 1999, 284–300 | Zbl