The distributions of the numbers of finite subgraphs in random nonhomogeneous hypergraphs
Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 102-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two random hypergraphs with $n$ vertices and $M=M(n)$ edges among which $M_i=M_i(n)$ edges consist of $i$ non-ordered vertices, $i=0,1,\dots,m$, $M=M_0+M_1+\ldots+M_m$. The choice of vertices for each edge is realised by equiprobable sampling with replacement from $n$ possible vertices for the former random hypergraph and by that without replacement for the latter one. We investigate the distribution of the numbers of subgraphs isomorphic to given subgraphs as $n\to\infty$, $M=M(n)$. The notion of degree and balanced subgraphs are extended to nonhomogeneous hypergraphs. The limit multivariate Poisson theorem for the numbers of strictly balanced subgraphs of equal degrees is obtained. A threshold function for presence of a subgraph isomorphic to an arbitrary finite hypergraph is constructed. Such results have been obtained for random graphs by P. Erdős, A. Rényi, B. Bollobás, and for homogeneous hypergraphs (that is, for $M=M_m$) by the author.
@article{DM_2006_18_3_a7,
     author = {A. V. Shapovalov},
     title = {The distributions of the numbers of finite subgraphs in random nonhomogeneous hypergraphs},
     journal = {Diskretnaya Matematika},
     pages = {102--114},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_3_a7/}
}
TY  - JOUR
AU  - A. V. Shapovalov
TI  - The distributions of the numbers of finite subgraphs in random nonhomogeneous hypergraphs
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 102
EP  - 114
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_3_a7/
LA  - ru
ID  - DM_2006_18_3_a7
ER  - 
%0 Journal Article
%A A. V. Shapovalov
%T The distributions of the numbers of finite subgraphs in random nonhomogeneous hypergraphs
%J Diskretnaya Matematika
%D 2006
%P 102-114
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_3_a7/
%G ru
%F DM_2006_18_3_a7
A. V. Shapovalov. The distributions of the numbers of finite subgraphs in random nonhomogeneous hypergraphs. Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 102-114. http://geodesic.mathdoc.fr/item/DM_2006_18_3_a7/

[1] Vantsyan A. G., “Evolyutsiya sluchainykh odnorodnykh gipergrafov”, Veroyatnostnye zadachi diskretnoi matematiki, MIEM, Moskva, 1987, 126–131 | MR

[2] Zykov A. A., “Gipergrafy”, Uspekhi matem. nauk, 29:6 (1974), 89–154 | MR | Zbl

[3] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984

[4] Kolchin V. F., Sistemy sluchainykh uravnenii, MIEM, Moskva, 1988

[5] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2004

[6] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 2004

[7] Shapovalov A. V., “O svyaznosti i porogovykh funktsiyakh podgrafov sluchainykh odnorodnykh gipergrafov”, Diskretnaya matematika, 5:3 (1993), 105–115 | MR | Zbl

[8] Shapovalov A. V., “O chisle strogo sbalansirovannykh podgrafov sluchainykh odnorodnykh gipergrafov”, Diskretnaya matematika, 5:4 (1993), 133–144 | MR | Zbl

[9] Shapovalov A. V., “Veroyatnost sovmestnosti sluchainykh sistem bulevykh uravnenii”, Diskretnaya matematika, 7:2 (1995), 146–159 | Zbl

[10] \English Barbour A. D., “Poisson convergence and random graphs”, Math. Proc. Cambridge Phil. Soc., 92 (1982), 349–359 | DOI | MR | Zbl

[11] Bollobás B., “Threshold functions for small subgraphs”, Math. Proc. Cambridge Phil. Soc., 90:2 (1981), 197–206 | DOI | MR | Zbl

[12] Bollobás B., Random graphs, Academic Press, London, 1985 | MR | Zbl

[13] Erdős P., Rényi A., “On the evolution of random graphs”, Publ. Math. Inst. Hung. Acad. Sci., 5 (1960), 17–61 | MR | Zbl

[14] Stein C., “A bound for the error in the normal approximation to the distribution of a sum of dependent random variables”, Proc. 6th Berkeley Symp. Math. Stat. Prob., 1970, v. 2, 583–602 | MR | Zbl