On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 29-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A branching process $Z_n$ with geometric distribution of descendants in a random environment represented by a sequence of independent identically distributed random variables (the Smith–Wilkinson model) is considered. The asymptotics of large deviation probabilities $\boldsymbol{\mathsf P}(\ln Z_n>\theta n)$, $\theta>0$, are found provided that the steps of the accompanying random walk $S_n$ satisfy the Cramér condition. In the cases of supercritical, critical, moderate, and intermediate subcritical processes the asymptotics follow that of the large deviations probabilities $\boldsymbol{\mathsf P}(S_n\le\theta n)$. In strongly subcritical case the same asymptotics hold for $\theta$ greater than some $\theta^*$ (for $\theta\le\theta^*$ the asymptotics of large deviation probabilities are different). This research was supported by the Russian Foundation for Basic Research, grant 04–01–00700, and by DFG, project 436 RUS 113/722.
@article{DM_2006_18_2_a1,
     author = {M. V. Kozlov},
     title = {On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants},
     journal = {Diskretnaya Matematika},
     pages = {29--47},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a1/}
}
TY  - JOUR
AU  - M. V. Kozlov
TI  - On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 29
EP  - 47
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_2_a1/
LA  - ru
ID  - DM_2006_18_2_a1
ER  - 
%0 Journal Article
%A M. V. Kozlov
%T On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants
%J Diskretnaya Matematika
%D 2006
%P 29-47
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_2_a1/
%G ru
%F DM_2006_18_2_a1
M. V. Kozlov. On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 29-47. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a1/

[1] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Prob., 12:1 (1975), 39–46 | DOI | MR | Zbl

[2] Afanasev V. I., “O sootnoshenii maksimalnogo i obschego chisla chastits v kriticheskom vetvyaschemsya protsesse v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 48:3 (2003), 435–452 | MR

[3] Vatutin V. A., “Predelnaya teorema dlya promezhutochno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 2003 48, no. 3, 453–465 | MR | Zbl

[4] Albeverio S., Kozlov M. V., “O vozvratnosti i tranzientnosti zavisyaschikh ot sostoyaniya vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 48:4 (2003), 641–660 | MR | Zbl

[5] Geiger I., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatnostei i ee primeneniya, 45:3 (2000), 607–615 | MR | Zbl

[6] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 21:4 (1976), 813–825 | MR | Zbl

[7] Kozlov M. V., “Uslovnaya funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Dokl. RAN, 344:1 (1995), 12–15 | MR | Zbl

[8] Petrov V. V., “O veroyatnosti bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 10:2 (1965), 310–322 | Zbl

[9] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR

[10] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, Moskva, 1984

[11] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, Moskva, 1972 | MR