@article{DM_2006_18_2_a0,
author = {A. V. Nagaev and V. R. Steblovskaya},
title = {On a two-dimensional binary model of a financial market and its generalization},
journal = {Diskretnaya Matematika},
pages = {3--28},
year = {2006},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a0/}
}
A. V. Nagaev; V. R. Steblovskaya. On a two-dimensional binary model of a financial market and its generalization. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 3-28. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a0/
[1] Cox J. C., Ross R. A., Rubinstein M., “Option pricing: a simplified approach”, J. Finan. Economics, 7 (1976), 229–263 | DOI
[2] Karatzas I., Lectures on the mathematics of finance, Amer. Math. Soc., Providence, 1996 | MR | Zbl
[3] Motoczynski M., Stettner L., “On option pricing in the multidimensional Cox–Ross–Rubinstein model”, Appl. Mathematicae, 25 (1998), 55–72 | MR | Zbl
[4] Nagaev A. V., Nagaev S. A., “A diffusion approximation for the riskless profit under selling of discrete time call options”, Appl. Mathematicae, 30 (2003), 173–191 | DOI | MR | Zbl
[5] Nagaev A. V., Nagaev S. A., Kunst R. M., A diffusion approximation for the riskless profit under selling of discrete time call options. Non-identically distributed jumps, Preprint, Institute for Advanced Studies, Vienna, 2005
[6] Nagaev A. V., Nagaev S. A., Kunst R. M., A diffusion approximation to the Markov chains model of the financial market and the expected riskless profit under selling of call and put options, Preprint, Institute for Advanced Studies, Vienna, 2005
[7] Pliska S. R., Introduction to mathematical finance. Discrete time models, Blackwell, Oxford, 1997
[8] Tessitore G., Zabczyk J., “Pricing options for multinomial models”, Bull. Polish Acad. Sci. Math., 44 (1996), 363–380 | MR | Zbl