On a two-dimensional binary model of a financial market and its generalization
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 3-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

An incomplete market with European type contingent claim based on two underlying assets whose price evolutions are assumed to be binary is considered. We obtain explicit formulas for upper and lower bounds for the rational price interval as well as for upper and lower hedging strategies. The obtained strategies are semi-self-financing in the sense that the extraction of funds is assumed at each time step with non-negative probability. The results are extended to the case where the stock price jumps are distributed over a closed rectangle and the pay-off function is convex. No assumptions are imposed on the joint distribution of the price jumps.
@article{DM_2006_18_2_a0,
     author = {A. V. Nagaev and V. R. Steblovskaya},
     title = {On a two-dimensional binary model of a financial market and its generalization},
     journal = {Diskretnaya Matematika},
     pages = {3--28},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a0/}
}
TY  - JOUR
AU  - A. V. Nagaev
AU  - V. R. Steblovskaya
TI  - On a two-dimensional binary model of a financial market and its generalization
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 3
EP  - 28
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_2_a0/
LA  - ru
ID  - DM_2006_18_2_a0
ER  - 
%0 Journal Article
%A A. V. Nagaev
%A V. R. Steblovskaya
%T On a two-dimensional binary model of a financial market and its generalization
%J Diskretnaya Matematika
%D 2006
%P 3-28
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_2_a0/
%G ru
%F DM_2006_18_2_a0
A. V. Nagaev; V. R. Steblovskaya. On a two-dimensional binary model of a financial market and its generalization. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 3-28. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a0/

[1] Cox J. C., Ross R. A., Rubinstein M., “Option pricing: a simplified approach”, J. Finan. Economics, 7 (1976), 229–263 | DOI

[2] Karatzas I., Lectures on the mathematics of finance, Amer. Math. Soc., Providence, 1996 | MR | Zbl

[3] Motoczynski M., Stettner L., “On option pricing in the multidimensional Cox–Ross–Rubinstein model”, Appl. Mathematicae, 25 (1998), 55–72 | MR | Zbl

[4] Nagaev A. V., Nagaev S. A., “A diffusion approximation for the riskless profit under selling of discrete time call options”, Appl. Mathematicae, 30 (2003), 173–191 | DOI | MR | Zbl

[5] Nagaev A. V., Nagaev S. A., Kunst R. M., A diffusion approximation for the riskless profit under selling of discrete time call options. Non-identically distributed jumps, Preprint, Institute for Advanced Studies, Vienna, 2005

[6] Nagaev A. V., Nagaev S. A., Kunst R. M., A diffusion approximation to the Markov chains model of the financial market and the expected riskless profit under selling of call and put options, Preprint, Institute for Advanced Studies, Vienna, 2005

[7] Pliska S. R., Introduction to mathematical finance. Discrete time models, Blackwell, Oxford, 1997

[8] Tessitore G., Zabczyk J., “Pricing options for multinomial models”, Bull. Polish Acad. Sci. Math., 44 (1996), 363–380 | MR | Zbl