On the number of solutions of a system of random linear equations in a set of vectors of a special form
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 40-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyse the distribution of the number of solutions of a system of random linear equations over $\mathit{GF}(q)$ in the set of vectors which have a given number of nonzero coordinates and in some subsets of this set. We deduce sufficient conditions for convergence of the distribution to the Poisson law, as well as to some other limit distributions related to this law, and to the standard normal law. Here we extend the results which the author have proved earlier for the case $q=2$.
@article{DM_2006_18_1_a3,
     author = {V. A. Kopyttsev},
     title = {On the number of solutions of a system of random linear equations in a set of vectors of a special form},
     journal = {Diskretnaya Matematika},
     pages = {40--62},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a3/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
TI  - On the number of solutions of a system of random linear equations in a set of vectors of a special form
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 40
EP  - 62
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a3/
LA  - ru
ID  - DM_2006_18_1_a3
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%T On the number of solutions of a system of random linear equations in a set of vectors of a special form
%J Diskretnaya Matematika
%D 2006
%P 40-62
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a3/
%G ru
%F DM_2006_18_1_a3
V. A. Kopyttsev. On the number of solutions of a system of random linear equations in a set of vectors of a special form. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 40-62. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a3/

[1] Kopyttsev V. A., “O chisle reshenii sistemy lineinykh bulevykh uravnenii v mnozhestve vektorov, obladayuschikh zadannym chislom edinits”, Diskretnaya matematika, 14:4 (2002), 87–109 | MR | Zbl

[2] Balakin G. V., “Vvedenie v teoriyu sluchainykh sistem uravnenii”, Trudy po diskretnoi matematike, 1, 1997, 1–18 | MR | Zbl

[3] Sevastyanov B. A., “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 733–738

[4] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl

[5] Mikhailov V. G., “Yavnye otsenki v predelnykh teoremakh dlya summ sluchainykh indikatorov”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:4 (1994), 580–617

[6] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, Moskva, 1978 | MR | Zbl

[7] Janson S., “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 305–312 | DOI | MR | Zbl