Testing numbers of the form $N=2kp^m-1$ for primality
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 146-155
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest an algorithm to test numbers of the form $N=2kp^m-1$ for primality,
where $2k$, $k$ is an odd positive integer,
$2k$, $p$ is a prime number, and $p=3\pmod 4$. The algorithm makes use
of the Lucas functions. First we present an algorithm to test numbers of the form
$N=2k3^m-1$. Then the same technique is used in the more general case where
$N=2kp^m-1$. The algorithms suggested here are of complexity
$O((\log N)^2 \log\log N \log\log\log N)$.
@article{DM_2006_18_1_a10,
author = {E. V. Sadovnik},
title = {Testing numbers of the form $N=2kp^m-1$ for primality},
journal = {Diskretnaya Matematika},
pages = {146--155},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a10/}
}
E. V. Sadovnik. Testing numbers of the form $N=2kp^m-1$ for primality. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 146-155. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a10/