Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2006_18_1_a10, author = {E. V. Sadovnik}, title = {Testing numbers of the form $N=2kp^m-1$ for primality}, journal = {Diskretnaya Matematika}, pages = {146--155}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a10/} }
E. V. Sadovnik. Testing numbers of the form $N=2kp^m-1$ for primality. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 146-155. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a10/
[1] Agrawal M., Kayal N., Saxena N., Primes is in P, Dept. Computer Sci. and Engineering, Indian Inst. Technology, Kanpur, Kanpur-208016, 2002
[2] Grusho A. A., Primenko E. A., Timonina E. E., Kriptograficheskie protokoly, Ioshkar-Ola, 2001 | Zbl
[3] Lucas E., “Theorie das functions numeriques simplement periodiques”, Amer. J. Math., 1 (1878), 184–239, 289–321 | DOI | MR
[4] Vinogradov I. M., Osnovy teorii chisel, Nauka, Moskva, 1972 | MR
[5] Williams H. C., “Effective primality tests for some integer of the form $A5^n-1$ and $A7^n-1$”, Mathematics of Computation, 48:177 (1987), 385–403 | DOI | MR | Zbl
[6] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, Moskva, 1965