Testing numbers of the form $N=2kp^m-1$ for primality
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 146-155
Cet article a éte moissonné depuis la source Math-Net.Ru
We suggest an algorithm to test numbers of the form $N=2kp^m-1$ for primality, where $2k$, $k$ is an odd positive integer, $2k$, $p$ is a prime number, and $p=3\pmod 4$. The algorithm makes use of the Lucas functions. First we present an algorithm to test numbers of the form $N=2k3^m-1$. Then the same technique is used in the more general case where $N=2kp^m-1$. The algorithms suggested here are of complexity $O((\log N)^2 \log\log N \log\log\log N)$.
@article{DM_2006_18_1_a10,
author = {E. V. Sadovnik},
title = {Testing numbers of the form $N=2kp^m-1$ for primality},
journal = {Diskretnaya Matematika},
pages = {146--155},
year = {2006},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a10/}
}
E. V. Sadovnik. Testing numbers of the form $N=2kp^m-1$ for primality. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 146-155. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a10/
[1] Agrawal M., Kayal N., Saxena N., Primes is in P, Dept. Computer Sci. and Engineering, Indian Inst. Technology, Kanpur, Kanpur-208016, 2002
[2] Grusho A. A., Primenko E. A., Timonina E. E., Kriptograficheskie protokoly, Ioshkar-Ola, 2001 | Zbl
[3] Lucas E., “Theorie das functions numeriques simplement periodiques”, Amer. J. Math., 1 (1878), 184–239, 289–321 | DOI | MR
[4] Vinogradov I. M., Osnovy teorii chisel, Nauka, Moskva, 1972 | MR
[5] Williams H. C., “Effective primality tests for some integer of the form $A5^n-1$ and $A7^n-1$”, Mathematics of Computation, 48:177 (1987), 385–403 | DOI | MR | Zbl
[6] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, Moskva, 1965