Approximation of Boolean functions by monomial functions
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 9-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Every Boolean function of $n$ variables is identified with a function $F\colon Q\to P$, where $Q=\mathit{GF}(2^n)$, $P=\mathit{GF}(2)$. A. Youssef and G. Gong showed that for $n=2\lambda$ there exist functions $F$ which have equally bad approximations not only by linear functions (that is, by functions $\operatorname{tr}(\mu x)$, where $\mu\in Q^*$ and $\operatorname{tr}\colon Q\to P$ is the trace function), but also by proper monomial functions (functions $\operatorname{tr}(\mu x^\delta)$, where $(\delta, 2^n-1)=1$). Such functions $F$ were called hyper-bent functions (HB functions, HBF), and for any $n=2\lambda$ a non-empty class of HBF having the property $F(0)=0$ was constructed. This class consists of the functions $F(x)=G(x^{2^\lambda-1})$ such that the equation $F(x)=1$ has exactly $(2^\lambda-1)2^{\lambda-1}$ solutions in $Q$. In the present paper, we give some essential restrictions on the parameters of an arbitrary HBF showing that the class of HBF is far less than that of bent functions. In particular, we show that any HBF is a bent function having the degree of nonlinearity $\lambda$, and for some $n$ (for instance, if $\lambda>2$ and $2^\lambda-1$ is prime, or $\lambda\in \{4,9,25,27\}$) the class of HBF is exhausted by the functions $F(x)=G(x^{2^\lambda-1})$ described by A. Youssef and G. Gong. For $n=4$, in addition to 10 HBF listed above there exist 18 more HBF with property $F(0)=0$. The question of whether there exist other hyper-bent functions for $n>4$ remains open. This research was supported by the Russian Foundation for Basic Research, grants 05–01–01048, 05–01–01018, and the program of the President of the Russian Federation for support of the leading scientific schools, grants 1910.2003.1, 2358.2003.9.
@article{DM_2006_18_1_a1,
     author = {A. S. Kuz'min and V. T. Markov and A. A. Nechaev and A. B. Shishkov},
     title = {Approximation of {Boolean} functions by monomial functions},
     journal = {Diskretnaya Matematika},
     pages = {9--29},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a1/}
}
TY  - JOUR
AU  - A. S. Kuz'min
AU  - V. T. Markov
AU  - A. A. Nechaev
AU  - A. B. Shishkov
TI  - Approximation of Boolean functions by monomial functions
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 9
EP  - 29
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a1/
LA  - ru
ID  - DM_2006_18_1_a1
ER  - 
%0 Journal Article
%A A. S. Kuz'min
%A V. T. Markov
%A A. A. Nechaev
%A A. B. Shishkov
%T Approximation of Boolean functions by monomial functions
%J Diskretnaya Matematika
%D 2006
%P 9-29
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a1/
%G ru
%F DM_2006_18_1_a1
A. S. Kuz'min; V. T. Markov; A. A. Nechaev; A. B. Shishkov. Approximation of Boolean functions by monomial functions. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 9-29. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a1/

[1] Golomb S. W., “On the classification of Boolean functions”, Trans. JRE, CT-6, 1959

[2] Zierler N., Mills W. H., “Products of linear recurring sequences”, J. Algebra, 27:1 (1973), 147–157 | DOI | MR | Zbl

[3] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[4] Dilon J. F., “A survey of bent functions”, NSA Technical J., 1972, 191–215

[5] Gong G., Golomb S. W., Transform domain analysis of DES, Techn. Rep., Univ. Waterloo, Canada, 1998

[6] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, ch. 2, Gelios, Moskva, 2003

[7] Lam T. Y., A first course in noncommutative rings, Springer, Berlin, 1991 | MR

[8] Lidl R., Niderraiter G., Konechnye polya, t. 1, 2, Mir, Moskva, 1988 | Zbl

[9] Mak-Vilyams F. Dzh., Sloen N. Dzh., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[10] Logachev O. A., Salnikov A. A., Yaschenko V. V., “O svoistvakh summ Veilya na konechnykh polyakh i konechnykh abelevykh gruppakh”, Diskretnaya matematika, 11:2 (1999), 66–85 | MR | Zbl

[11] Postnikov M. M., Vvedenie v teoriyu algebraicheskikh chisel, Nauka, Moskva, 1982 | MR

[12] Youssef A. M., Gong G., “Hyper-bent functions”, Lect. Notes Comput. Sci., 2045, 2001, 406–419 | MR | Zbl