Generation of uniform distribution robust to nonequiprobability of the initial digits
Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 72-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider procedures of generation of a random residue modulo $q$, where $q$ is some positive integer. We start from a sequence of independent equiprobable residues modulo $p$, where $p$ is some positive integer; the problem consists of minimisation of the average number of needed digits. Furthermore, the equiprobability of the output digit must be retained even in the case where the input of the procedure is fed by nonequiprobable independent identically distributed digits. Our attraction is toward more simple and less labour-consuming procedures. Our main results concern the cases $q=n!$ and $q=\binom nr$.
@article{DM_2005_17_4_a6,
     author = {F. M. Malyshev},
     title = {Generation of uniform distribution robust to nonequiprobability of the initial digits},
     journal = {Diskretnaya Matematika},
     pages = {72--80},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a6/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Generation of uniform distribution robust to nonequiprobability of the initial digits
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 72
EP  - 80
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_4_a6/
LA  - ru
ID  - DM_2005_17_4_a6
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Generation of uniform distribution robust to nonequiprobability of the initial digits
%J Diskretnaya Matematika
%D 2005
%P 72-80
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_4_a6/
%G ru
%F DM_2005_17_4_a6
F. M. Malyshev. Generation of uniform distribution robust to nonequiprobability of the initial digits. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 72-80. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a6/

[1] Sandelius M., “A simple randomisation procedure”, J. Royal Stat. Soc., 24:2 (1962), 472–481 | Zbl

[2] Knut D., Yao E., “Slozhnost modelirovaniya neravnomernykh raspredelenii”, Kibern. sb., 19 (1983), 97–158 | Zbl

[3] Abrahams J., “Generation of discrete distributions from biased coins”, IEEE Trans. Inform. Theory, 42:5 (1966), 1541–1546 | DOI | MR

[4] Gargano L., Vaccaro U., “Efficient generation of fair dice with few biased coins”, IEEE Trans. Inform. Theory, 45:5 (1999), 1600–1606 | DOI | MR | Zbl

[5] Juels A., Jakobsson M., Shriver E., Hillyer B. K., “How to turn loaded dice into fair coins”, IEEE Trans. Inform. Theory, 46:3 (2000), 911–921 | DOI | MR | Zbl

[6] von Neumann J., “Various techniques used in connection with random digits”, Collected Works. Vol. V: Design of Computers, Theory of Automata and Numerical Analysis, MacMillan, New York, 1963, 768–770 | MR

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, t. 1, Fizmatlit, Moskva, 2003 | MR