The law of large numbers for permanents of random matrices
Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 59-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of random matrices $C=(c_{ij})$, $i,j=1,\dots,N$, whose elements are independent random variables distributed by the same law as a certain random variable $\xi$ such that $\mathsf E\xi^2>0$. As usual, $\operatorname{per}C$ stands for the permanent of the matrix $C$. In the triangular array series where $\xi=\xi_N$, $\mathsf E\xi_N\neq 0$, $N=1,2,\dotsc$, $\mathsf D\xi_N=o((\mathsf E\xi_N)^2)$ as $N\to\infty$, we prove that the sequence of random variables $\operatorname{per}C/(N!\,(\mathsf E\xi_N)^N)$ converges in probability to one as $N\to \infty$. A similar result is shown to be true in a more general case where the rows of the matrix $C$ are independent $N$-dimensional random vectors which have the same distribution coinciding with the distribution of a random vector $\mu$ whose components are identically distributed but are, generally speaking, dependent. We give sufficient conditions for the law of large numbers to be true for the sequence $\operatorname{per}C/\mathsf E\operatorname{per}C$ in the cases where the vector $\mu$ coincides with the vector of frequencies of outcomes of the equiprobable polynomial scheme with $N$ outcomes and $n$ trials and also where $\mu$ is a random equiprobable solution of the equation $k_1+\ldots+k_N=n$ in non-negative integers $k_1,\dots,k_N$.
@article{DM_2005_17_4_a5,
     author = {A. N. Timashev},
     title = {The law of large numbers for permanents of random matrices},
     journal = {Diskretnaya Matematika},
     pages = {59--71},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a5/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - The law of large numbers for permanents of random matrices
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 59
EP  - 71
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_4_a5/
LA  - ru
ID  - DM_2005_17_4_a5
ER  - 
%0 Journal Article
%A A. N. Timashev
%T The law of large numbers for permanents of random matrices
%J Diskretnaya Matematika
%D 2005
%P 59-71
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_4_a5/
%G ru
%F DM_2005_17_4_a5
A. N. Timashev. The law of large numbers for permanents of random matrices. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 59-71. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a5/

[1] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, Moskva, 1978 | MR | Zbl

[2] Prokhorov Yu. V. (red.), Veroyatnost i matematicheskaya statistika, Entsiklopediya, Bolshaya Rossiiskaya entsiklopediya, Moskva, 1999 | MR

[3] O'Neil P. E., “Asymptotics in random $(0,1)$-matrices”, Proc. Amer. Math. Soc., 25:2 (1970), 290–295 | DOI | MR

[4] O'Neil P. E., “Asymptotics and random matrices with row-sum and column-sum restrictions”, Bull. Amer. Math. Soc., 75:6 (1969), 1276–1282 | DOI | MR

[5] Timashev A. N., “Zakon bolshikh chisel dlya permanentov sluchainykh stokhasticheskikh matrits”, Diskretnaya matematika, 11:3 (1999), 91–98 | MR

[6] Erdesh P., Spenser Dzh., Veroyatnostnye metody v kombinatorike, Mir, Moskva, 1976 | MR