On the distribution of the $m$th maximal cycle lengths of random $A$-permutations
Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 40-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S_n$ be the symmetric group of all permutations of degree $n$, $A$ be some subset of the set of natural numbers $\mathbf N$, and $T_n=T_n(A)$ be the set of all permutations of $S_n$ with cycle lengths belonging to $A$. The permutations of $T_n$ are called $A$-permutations. We consider a wide class of the sets $A$ with the asymptotic density $\sigma>0$. In this article, the limit distributions are obtained for $\mu_{m}(n)/n$ as $n\to\infty$ and $m\in\mathbf N$ is fixed. Here $\mu_{m}(n)$ is the length of the $m$th maximal cycle in a random permutation uniformly distributed on $T_n$. It is shown here that these limit distributions coincide with the limit distributions of the corresponding functionals of the random permutations in the Ewens model with parameter $\sigma$. This research was supported by the Russian Foundation for Basic Research, grant 05–01–00583, and by the Program of the President of the Russian Federation for support of leading scientific schools, grant 1758.2003.1.
@article{DM_2005_17_4_a4,
     author = {A. L. Yakymiv},
     title = {On the distribution of the $m$th maximal cycle lengths of random $A$-permutations},
     journal = {Diskretnaya Matematika},
     pages = {40--58},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a4/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On the distribution of the $m$th maximal cycle lengths of random $A$-permutations
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 40
EP  - 58
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_4_a4/
LA  - ru
ID  - DM_2005_17_4_a4
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On the distribution of the $m$th maximal cycle lengths of random $A$-permutations
%J Diskretnaya Matematika
%D 2005
%P 40-58
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_4_a4/
%G ru
%F DM_2005_17_4_a4
A. L. Yakymiv. On the distribution of the $m$th maximal cycle lengths of random $A$-permutations. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 40-58. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a4/

[1] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., “Asimptoticheskaya normalnost nekotorykh velichin, svyazannykh s tsiklovoi strukturoi sluchainykh podstanovok”, Matem. sb., 99:1 (1976), 121–133 | MR | Zbl

[2] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., “O nekotorykh klassakh sluchainykh velichin na tsiklakh sluchainykh podstanovok”, Matem. sb., 108:1 (1979), 87–99 | MR

[3] Bolotnikov Yu. V., Tarakanov V. E., “Predelnye raspredeleniya v zadachakh o tsiklakh sluchainykh podstanovok”, Kombinatornyi i asimptoticheskii analiz, Izd-vo Krasnoyarskogo univ., Krasnoyarsk, 1977, 62–68 | MR

[4] Bender E. A., “Asimptoticheskie metody v teorii perechislenii”, Perechislitelnye zadachi kombinatornogo analiza, Mir, Moskva, 1979, 266–310

[5] Vladimirov V. S., Zavyalov B. I., “Tauberovy teoremy v kvantovoi teorii polya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, 1980, 95–130 | MR | Zbl

[6] Volynets L. M., “Chislo reshenii uravneniya v simmetricheskoi gruppe”, Veroyatnostnye protsessy i ikh prilozheniya, MIEM, Moskva, 1985, 104–109

[7] Volynets L. M., “Chislo reshenii uravneniya $x^s=e$ v simmetricheskoi gruppe”, Matem. zametki, 40 (1986), 586–589 | MR | Zbl

[8] Volynets L. M., “Primer nestandartnoi asimptotiki chisla podstanovok s ogranicheniyami na dliny tsiklov”, Veroyatnostnye protsessy i ikh primeneniya, MIEM, Moskva, 1989, 85–90 | MR

[9] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, ser. matem., 8 (1944), 3–48

[10] Grusho A. A., “Properties of random permutations with constraints on the maximum cycle length”, Probabilistic Methods in Discrete Mathematics, TVP/VSP, Moscow/Utrecht, 1993, 459–469 | MR

[11] Ewens W. J., “The sampling theory of selectively neutral alleles”, Theor. Popul. Biol., 3 (1972), 87–112 | DOI | MR | Zbl

[12] Ivchenko G. I., Medvedev Yu. I., “O sluchainykh podstanovkakh”, Trudy po diskretnoi matematike, 5, 2002, 73–92 | MR

[13] Ivchenko G. I., Medvedev Yu. I., “Metod V. L. Goncharova i ego razvitie v analize razlichnykh modelei sluchainykh podstanovok”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 558–566 | MR | Zbl

[14] Kolchin A. V., “Uravneniya, soderzhaschie neizvestnuyu podstanovku”, Diskretnaya matematika, 6:1 (1994), 100–115 | MR | Zbl

[15] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR

[16] Kolchin V. F., “O chisle tsiklov podstanovki s ogranicheniyami na dliny tsiklov”, Diskretnaya matematika, 1:2 (1989), 97–109 | MR

[17] Kolchin V. F., “The number of permutations with cycle lengths from a fixed set”, Random Graphs, v. 2, Wiley, Chichester, 1992, 139–149 | MR | Zbl

[18] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2000 | MR | Zbl

[19] Manstavicius E., “On random permutations without cycles of some lengths”, Period. Math. Hung., 42 (2001), 37–44 | DOI | MR | Zbl

[20] Mineev M. P., Pavlov A. I., “O chisle podstanovok spetsialnogo vida”, Matem. sb., 99:3 (1976), 421–429 | MR | Zbl

[21] Mineev M. P., Pavlov A. I., “Ob odnom uravnenii v podstanovkakh”, Tr. MIAN, 142, 1976, 182–194 | MR | Zbl

[22] Pavlov A. I., “O chisle tsiklov i tsiklovoi strukture podstanovok nekotorykh klassov”, Matem. sb., 124:4 (1984), 536–556 | MR | Zbl

[23] Pavlov A. I., “O nekotorykh klassakh podstanovok s teoretiko-chislovymi ogranicheniyami na dliny tsiklov”, Matem. sb., 129:2 (1986), 252–263 | MR | Zbl

[24] Pavlov A. I., “O podstanovkakh s dlinami tsiklov iz zadannogo mnozhestva”, Teoriya veroyatnostei i ee primeneniya, 31 (1986), 618–619

[25] Pavlov A. I., “O chisle podstanovok s dlinami tsiklov iz zadannogo mnozhestva”, Diskretnaya matematika, 3:3 (1991), 109–123

[26] Pavlov A. I., “O chisle podstanovok s konechnymi mnozhestvom dlin tsiklov”, Tr. MIAN, 207, 1994, 256–267 | MR | Zbl

[27] Pavlov A. I., “Asimptotika chisla podstanovok s teoretiko-chislovymi ogranicheniyami na dliny tsiklov”, Dokl. RAN, 335:5 (1994), 556–559 | MR | Zbl

[28] Pavlov A. I., “O dvukh klassakh podstanovok s teoretiko-chislovymi ogranicheniyami na dliny tsiklov”, Matem. zametki, 62:6 (1997), 881–891 | MR | Zbl

[29] Postnikov A. G., Vvedenie v analiticheskuyu teoriyu chisel, Nauka, Moskva, 1971 | MR

[30] Sachkov V. N., “Otobrazheniya konechnogo mnozhestva s ogranicheniyami na kontury i vysotu”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 679–694 | Zbl

[31] Sachkov V. N., “Sluchainye otobrazheniya ogranichennoi vysoty”, Teoriya veroyatnostei i ee primeneniya, 18:1 (1973), 122–132 | Zbl

[32] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, Moskva, 1978 | MR | Zbl

[33] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, Moskva, 1985 | MR | Zbl

[34] Tarakanov V. E., Chistyakov V. P., “O tsiklovoi strukture sluchainykh podstanovok”, Matem. sb., 96:4 (1975), 594–600 | MR | Zbl

[35] Shepp L. A., Lloyd S. P., “Ordered cycle lengths in a random permutation”, Trans. Amer. Math. Soc., 121:2 (1966), 340–357 | DOI | MR | Zbl

[36] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, Moskva, 1984

[37] Yakymiv A. L., “O chisle $A$-podstanovok”, Matem. sb., 180:2 (1989), 294–303 | MR | Zbl

[38] Yakymiv A. L., “O podstanovkakh s dlinami tsiklov iz zadannogo mnozhestva”, Diskretnaya matematika, 1:1 (1989), 105–116 | MR

[39] Yakymiv A. L., “O sluchainykh podstanovkakh s dlinami tsiklov iz zadannogo mnozhestva”, Veroyatnostnye protsessy i ikh prilozheniya, MIEM, Moskva, 1991, 24–27

[40] Yakymiv A. L., “O nekotorykh klassakh podstanovok s dlinami tsiklov iz zadannogo mnozhestva”, Diskretnaya matematika, 3:3 (1992), 128–134 | MR | Zbl

[41] Yakymiv A. L., “O chisle podstanovok s dlinami tsiklov iz sluchainogo mnozhestva”, Diskretnaya matematika, 12:4 (2000), 53–62 | MR | Zbl

[42] Yakymiv A. L., “Limit theorems for random $A$-permutations”, Probabilistic Methods in Discrete Mathematics, TVP/VSP, Moscow/Utrecht, 1993, 459–469 | MR | Zbl