Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2005_17_4_a1, author = {S. A. Stepanov}, title = {A new class of nonlinear quinary codes}, journal = {Diskretnaya Matematika}, pages = {7--17}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a1/} }
S. A. Stepanov. A new class of nonlinear quinary codes. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 7-17. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a1/
[1] Baliga A., “New self-dual codes from cocyclic Hadamard matrices”, J. Comb. Math. Comb. Comput., 28 (1982), 7–14 | MR
[2] Baliga A., Horadam K. J., “Cocyclic Hadamard matrices over $\mathbf Z_t\times\mathbf Z_2^2$”, Australian J. Comb., 11 (1995), 123–134 | MR | Zbl
[3] Butson K. T., “Generalized Hadamard matrices”, Proc. Amer. Math. Soc., 13 (1962), 894–898 | DOI | MR
[4] Elliot D. F., Rao K. R., Fast transforms. Algorithms, analyses, applications, Academic Press, New York, 1982 | MR
[5] Horadam K. J., Udaya P., “Cocyclic Hadamard codes”, IEEE Trans. Inform. Theory, 46 (2000), 1545–1550 | DOI | MR | Zbl
[6] Maslen D. K., Rockmore D. N., “Generalized FFTs—a survey of some recent results”, DIMACS Ser. Discr. Math. Theoret. Comp. Sci., 28 (1997), 183–237 | MR | Zbl
[7] Pinnawala N., Rao A., “Cocyclic simplex codes of type $\alpha$ over $\mathbf Z_4$ and $\mathbf Z_2$”, IEEE Trans. Inform. Theory, 50:9 (2004), 2165–2169 | DOI | MR