A new class of nonlinear quinary codes
Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 7-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct two new families of nonlinear quinary codes, derived from the corresponding families of modified Butson–Hadamard matrices. These codes have the minimal distance close to the Plotkin bound and have very easy construction and decoding procedures. This research was supported by the Institute of Information Technology Assessment, South Korea.
@article{DM_2005_17_4_a1,
     author = {S. A. Stepanov},
     title = {A new class of nonlinear quinary codes},
     journal = {Diskretnaya Matematika},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a1/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - A new class of nonlinear quinary codes
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 7
EP  - 17
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_4_a1/
LA  - ru
ID  - DM_2005_17_4_a1
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T A new class of nonlinear quinary codes
%J Diskretnaya Matematika
%D 2005
%P 7-17
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_4_a1/
%G ru
%F DM_2005_17_4_a1
S. A. Stepanov. A new class of nonlinear quinary codes. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 7-17. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a1/

[1] Baliga A., “New self-dual codes from cocyclic Hadamard matrices”, J. Comb. Math. Comb. Comput., 28 (1982), 7–14 | MR

[2] Baliga A., Horadam K. J., “Cocyclic Hadamard matrices over $\mathbf Z_t\times\mathbf Z_2^2$”, Australian J. Comb., 11 (1995), 123–134 | MR | Zbl

[3] Butson K. T., “Generalized Hadamard matrices”, Proc. Amer. Math. Soc., 13 (1962), 894–898 | DOI | MR

[4] Elliot D. F., Rao K. R., Fast transforms. Algorithms, analyses, applications, Academic Press, New York, 1982 | MR

[5] Horadam K. J., Udaya P., “Cocyclic Hadamard codes”, IEEE Trans. Inform. Theory, 46 (2000), 1545–1550 | DOI | MR | Zbl

[6] Maslen D. K., Rockmore D. N., “Generalized FFTs—a survey of some recent results”, DIMACS Ser. Discr. Math. Theoret. Comp. Sci., 28 (1997), 183–237 | MR | Zbl

[7] Pinnawala N., Rao A., “Cocyclic simplex codes of type $\alpha$ over $\mathbf Z_4$ and $\mathbf Z_2$”, IEEE Trans. Inform. Theory, 50:9 (2004), 2165–2169 | DOI | MR