Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2005_17_3_a9, author = {K. G. Omel'yanov}, title = {On the number of independent sets in damaged {Cayley} graphs}, journal = {Diskretnaya Matematika}, pages = {105--108}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2005_17_3_a9/} }
K. G. Omel'yanov. On the number of independent sets in damaged Cayley graphs. Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 105-108. http://geodesic.mathdoc.fr/item/DM_2005_17_3_a9/
[1] Alon N., “Independent sets in regular graphs and sum-free subsets of finite groups”, Israel J. Math., 73:2 (1991), 247–256 | DOI | MR | Zbl
[2] Omelyanov K. G., Sapozhenko A. A., “O chisle mnozhestv, svobodnykh ot summ, v otrezke naturalnykh chisel”, Diskretnaya matematika, 14:3 (2002), 3–7 | MR
[3] Omelyanov K. G., Sapozhenko A. A., “O chisle i strukture mnozhestv, svobodnykh ot summ, v otrezke naturalnykh chisel”, Diskretnaya matematika, 15:4 (2003), 141–147 | MR
[4] Sapozhenko A. A., “Dokazatelstvo gipotezy Kamerona–Erdesha o chisle mnozhestv, svobodnykh ot summ”, Matem. voprosy kibernetiki, 12 (2003), 5–14
[5] Green B., “The Cameron–Erdős conjecture”, Bull. London Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl