Random sequences of the form
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 49-55
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove inequalities for the mean square deviation $\delta_{N,n}$
of the $N$ step transition matrix from the equiprobable matrix
for certain random affine walk in the residue ring modulo $n$ with dependent
linear and drift components.
It is proved that the relation
$$
\lim_{n\to \infty} \delta_{N,n}=0
$$ is true if and only if $N/n^2\to \infty$ as $n\to\infty$. Under this condition,
$$
\delta^2_{N,n}\sim \varepsilon_n \exp\{-\pi^2 N/l_n^2\},
$$
as $n\to\infty, $ where $\varepsilon_n=2$ if $n$ is even and $\varepsilon_n=1$ if
$n$ is odd,
$l_n=n/2$
if $n$ is even and $l_n=n$ if $n$ is odd.
This research was supported by the program of the President of Russian Federation for
support of leading scientific schools, grant 2358.2003.9.
@article{DM_2005_17_2_a2,
author = {I. A. Kruglov},
title = {Random sequences of the form},
journal = {Diskretnaya Matematika},
pages = {49--55},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a2/}
}
I. A. Kruglov. Random sequences of the form. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 49-55. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a2/