Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2005_17_2_a2, author = {I. A. Kruglov}, title = {Random sequences of the form}, journal = {Diskretnaya Matematika}, pages = {49--55}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a2/} }
I. A. Kruglov. Random sequences of the form. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 49-55. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a2/
[1] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, 1997, 85–112 | MR
[2] Chung F., Diaconis P., Graham R. L., “A random walk problem arising in random number generation”, Ann. Probab., 15 (1987), 1148–1165 | DOI | MR | Zbl
[3] Chassing P., “An optimal random number generator on $Z_p$”, Statist. Probab. Lett., 7 (1989), 307–309 | DOI | MR
[4] Hildebrand M., “Random processes of the form $X_{n+1}=a_n X_n=b_n\pmod p$”, Ann. Probab., 21 (1993), 710–720 | DOI | MR | Zbl
[5] Hildebrand M., “Random processes of the form $X_{n+1}=a_n X_n=b_n\pmod p$, where $b_n$ takes on a single value”, Random Discrete Structures, IMA Vol. Math. Appl., 76, 1996, 153–174 | MR | Zbl
[6] Knut D., Iskusstvo programmirovaniya dlya EVM. T. 2: Poluchislennye algoritmy, Mir, Moskva, 1984
[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 1, Mir, Moskva, 1984
[8] Serr Zh.-P., Lineinye predstavleniya grupp, Mir, Moskva, 1970 | Zbl