On stable and unstable trees
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 150-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph is called stable if the adjacency matrix of the graph is nonsingular and unstable otherwise. Such terminology is related to applications in chemistry. We consider weighted graphs, this generalisation is also justified from the point of view of applications in chemistry, since it removes some restrictions in the Huckel model. Stability and instability of a weighted tree do not depend on replacements of any non-zero weights by arbitrary non-zero weights, that is, under replacement of ones in the adjacency matrix of a tree by arbitrary non-zero numbers singularity or non-singularity survives. We suggest a characterisation of stable and unstable trees which is based on a construction of trees from the so-called elementary trees.
@article{DM_2005_17_2_a12,
     author = {V. A. Kolmykov},
     title = {On stable and unstable trees},
     journal = {Diskretnaya Matematika},
     pages = {150--152},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a12/}
}
TY  - JOUR
AU  - V. A. Kolmykov
TI  - On stable and unstable trees
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 150
EP  - 152
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_2_a12/
LA  - ru
ID  - DM_2005_17_2_a12
ER  - 
%0 Journal Article
%A V. A. Kolmykov
%T On stable and unstable trees
%J Diskretnaya Matematika
%D 2005
%P 150-152
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_2_a12/
%G ru
%F DM_2005_17_2_a12
V. A. Kolmykov. On stable and unstable trees. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 150-152. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a12/

[1] Tsvetkovich D., Dub M., Zakhs Kh., Spektry grafov. Teoriya i primenenie, Naukova Dumka, Kiev, 1984 | MR

[2] Stankevich I. V., Skvortsova M. I., Kolmykov V. A., Subbotin V. F., Mnuchin V. B., “Spectral graph theory in chemistry”, Mathematical Methods in Contemporary Chemistry, Gordon Breach, New York, 1996, 101–141

[3] Schwenk A. J., “Almost all trees are cospectral”, New Directions in Theory of Graphs, Academic Press, New York, 1973, 275–307 | MR