A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 19-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to test homogeneity of $r$ independent polynomial schemes with the same number of outcomes $N$ under non-classical conditions where the numbers of trials $n_d$, $d=1,\dots,r$, in each of the schemes and the number of outcomes $N$ tend to infinity, we suggest a statistic $I(\lambda,r)$ which is a multidimensional analogue of the statistic $I(\lambda)$ introduced by T. Read and N. Cressie. We obtain conditions of asymptotic normality of the distributions of the statistics $I(\lambda)$ and $I(\lambda,r)$ for an arbitrary fixed integer $\lambda$, $\lambda\ne 0,-1$, as $N\to\infty$, $n_dN^{-1}\to\infty$, $d=1,\dots,r$. The expressions for the centring and normalising parameters are given in the explicit form for the hypothesis $H_0$ under which the distributions in these $r$ schemes coincide, and for some class of alternatives close to $H_0$.
@article{DM_2005_17_2_a1,
     author = {A. P. Baranov and Yu. A. Baranov},
     title = {A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials},
     journal = {Diskretnaya Matematika},
     pages = {19--48},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/}
}
TY  - JOUR
AU  - A. P. Baranov
AU  - Yu. A. Baranov
TI  - A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 19
EP  - 48
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/
LA  - ru
ID  - DM_2005_17_2_a1
ER  - 
%0 Journal Article
%A A. P. Baranov
%A Yu. A. Baranov
%T A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials
%J Diskretnaya Matematika
%D 2005
%P 19-48
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/
%G ru
%F DM_2005_17_2_a1
A. P. Baranov; Yu. A. Baranov. A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 19-48. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/

[1] Read T. R. C., Cressie N. A. C., Goodness-of-fit statistics for discrete multivariate data, Springer, New York, 1988 | MR | Zbl

[2] Bykov S. I., Ivanov V. A., “Ob usloviyakh asimptoticheskoi normalnosti mnogomernykh randomizirovannykh razdelimykh statistik”, Diskretnaya matematika, 1:2 (1989), 57–61 | MR

[3] Ivanov V. A., Ivchenko G. I., Medvedev Yu. I., “Diskretnye zadachi v teorii veroyatnostei”, Itogi nauki i tekhniki, seriya: Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 22, VINITI, Moskva, 1984, 3–59 | MR

[4] Ivchenko G. I., Medvedev Yu. I., “Razdelimye statistiki i proverka gipotez. Sluchai malykh vyborok”, Teoriya veroyatnostei i ee primeneniya, 23:4 (1978), 796–806 | MR | Zbl

[5] Knuth D. E., “Two notes on notation”, American Math. Monthly, 99 (1992), 402–422 | MR

[6] Baranov A. P., Baranov Yu. A., “Approksimatsiya tselochislennykh momentov obobschennymi faktorialnymi stepenyami”, Diskretnaya matematika, 17:1 (2005), 50–67 | MR | Zbl

[7] Baranov A. P., Baranov Yu. A., “Raspredelenie statistiki stepeni rasseivaniya s rastuschim chislom iskhodov v kriterii prinadlezhnosti”, Trudy po diskretnoi matematike, 8, 2004, 34–51

[8] Rao S. R., Lineinye statisticheskie metody i ikh primeneniya, Nauka, Moskva, 1968 | MR | Zbl

[9] Ivchenko G. I., Levin V. V., “Razdelimye statistiki i kriterii odnorodnosti dlya polinomialnykh vyborok”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:6 (1995), 871–887 | MR

[10] Kramer G., Matematicheskie metody statistiki, Mir, Moskva, 1975 | MR