A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 19-48

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to test homogeneity of $r$ independent polynomial schemes with the same number of outcomes $N$ under non-classical conditions where the numbers of trials $n_d$, $d=1,\dots,r$, in each of the schemes and the number of outcomes $N$ tend to infinity, we suggest a statistic $I(\lambda,r)$ which is a multidimensional analogue of the statistic $I(\lambda)$ introduced by T. Read and N. Cressie. We obtain conditions of asymptotic normality of the distributions of the statistics $I(\lambda)$ and $I(\lambda,r)$ for an arbitrary fixed integer $\lambda$, $\lambda\ne 0,-1$, as $N\to\infty$, $n_dN^{-1}\to\infty$, $d=1,\dots,r$. The expressions for the centring and normalising parameters are given in the explicit form for the hypothesis $H_0$ under which the distributions in these $r$ schemes coincide, and for some class of alternatives close to $H_0$.
@article{DM_2005_17_2_a1,
     author = {A. P. Baranov and Yu. A. Baranov},
     title = {A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials},
     journal = {Diskretnaya Matematika},
     pages = {19--48},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/}
}
TY  - JOUR
AU  - A. P. Baranov
AU  - Yu. A. Baranov
TI  - A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 19
EP  - 48
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/
LA  - ru
ID  - DM_2005_17_2_a1
ER  - 
%0 Journal Article
%A A. P. Baranov
%A Yu. A. Baranov
%T A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials
%J Diskretnaya Matematika
%D 2005
%P 19-48
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/
%G ru
%F DM_2005_17_2_a1
A. P. Baranov; Yu. A. Baranov. A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 19-48. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a1/