On the number of product-free sets in groups of even order
Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 89-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the asymptotic behaviour of the number of product-free sets in finite groups of even order.This research was supported by the Russian Foundation for Basic Research, grant 04–01–00359.
@article{DM_2005_17_1_a7,
     author = {T. G. Petrosyan},
     title = {On the number of product-free sets in groups of even order},
     journal = {Diskretnaya Matematika},
     pages = {89--101},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_1_a7/}
}
TY  - JOUR
AU  - T. G. Petrosyan
TI  - On the number of product-free sets in groups of even order
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 89
EP  - 101
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_1_a7/
LA  - ru
ID  - DM_2005_17_1_a7
ER  - 
%0 Journal Article
%A T. G. Petrosyan
%T On the number of product-free sets in groups of even order
%J Diskretnaya Matematika
%D 2005
%P 89-101
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_1_a7/
%G ru
%F DM_2005_17_1_a7
T. G. Petrosyan. On the number of product-free sets in groups of even order. Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/DM_2005_17_1_a7/

[1] Alon N., “Independent sets in regular graphs and sum-free subsets of finite groups”, Israel J. Math., 73 (1991), 247–256 | DOI | MR | Zbl

[2] Lev V., Luczak T., Schoen T., “Sum-free sets in abelian groups”, Israel J. Math., 125 (2001), 347–367 | DOI | MR | Zbl

[3] Sapozhenko A. A., “O chisle mnozhestv, svobodnykh ot summ, v abelevykh gruppakh”, Vestnik Moskovskogo univ., ser. 1, 2002, no. 4, 14–18 | MR | Zbl

[4] Sapozhenko A. A., “O chisle nezavisimykh mnozhestv v rasshiritelyakh”, Diskretnaya matematika, 13:1 (2001), 56–62 | MR | Zbl

[5] Olson J. E., “On the sum of two sets in a group”, J. Number Theory, 18 (1984), 110–120 | DOI | MR | Zbl

[6] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, Fizmatlit, Moskva, 2004