Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2004_16_4_a8, author = {A. S. Rybakov}, title = {The shortest vectors of lattices connected with a linear congruent generator}, journal = {Diskretnaya Matematika}, pages = {88--109}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a8/} }
A. S. Rybakov. The shortest vectors of lattices connected with a linear congruent generator. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 88-109. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a8/
[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, Moskva, 1985 | MR | Zbl
[2] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, Moskva, 1965 | MR
[3] Koblits N., $p$-adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Bibfizmat, Mogilev, 1982 | MR
[4] Prakhar K., Raspredelenie prostykh chisel, Mir, Moskva, 1967 | MR
[5] Feldman N. I., Sedmaya problema Gilberta, Izd-vo MGU, Moskva, 1982 | MR
[6] Frieze A. M., Håstad J., Kannan R., Lagarias J. C., Shamir A., “Reconstructing truncated integer variables satisfying linear congruences”, SIAM J. Comput., 17:2 (1988), 262–280 | DOI | MR | Zbl
[7] Lagarias J. C., Lenstra H. W., Schnorr C. P., Korkine–Zolotareff bases and successive minima of a lattice and its reciprocal lattice, Tech. Rept., MSRI 07718-86, Math. Sci. Research Inst., Berkeley
[8] Waldschmidt M., Diophantine approximation on linear algebraic groups, Springer, Berlin, 1999 | MR | Zbl