On a relationship between the eigenvectors of weighted graphs and their subgraphs
Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 32-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of finding connections between eigen-vectors and
subgraphs of a weighted undirected graph $G$.
Let $G$ have $n$ vertices labelled $1,\ldots,n$, $\lambda$ be an eigen-value of the graph $G$ of multiplicity $t\ge 1$, and let $X^{(i)}=(x_1^{(i)},\ldots,x_n^{(i)})$, $i=1,\ldots,t$, be linearly independent eigen-vectors corresponding to this eigen-value. We obtain formulas representing the components $x_j^{(i)}$ of the eigen-vectors $X^{(i)}$ in terms of some characteristics of special subgraphs of the graph $G$, $i=1,\ldots,t$,
$j=1,\ldots,n$. An illustrative example is given.
@article{DM_2004_16_4_a3,
author = {M. I. Skvortsova and I. V. Stankevich},
title = {On a relationship between the eigenvectors of weighted graphs and their subgraphs},
journal = {Diskretnaya Matematika},
pages = {32--40},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a3/}
}
TY - JOUR AU - M. I. Skvortsova AU - I. V. Stankevich TI - On a relationship between the eigenvectors of weighted graphs and their subgraphs JO - Diskretnaya Matematika PY - 2004 SP - 32 EP - 40 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2004_16_4_a3/ LA - ru ID - DM_2004_16_4_a3 ER -
M. I. Skvortsova; I. V. Stankevich. On a relationship between the eigenvectors of weighted graphs and their subgraphs. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 32-40. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a3/